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2 Departamento de Matemática Aplicada, Universidade Estadual de Campinas, Campinas,
Brasil

E-mail: jgvs190@gmail.com, juan.vergano@alu.ucm.cl

Abstract. The study presents a model of distribution of toxic agents in flat aquatic regions
such as lakes, lagoons, and coastal seas, two sources of pollution are modeled, one from the waste
of industrial plants and another one, a product of the runoff phenomenon of the agricultural
industry. Methodologically, a mathematical model based on the advection-diffusion equation
is used, which allows knowing the concentration of the contaminant at all times in time for
the given region. The problem system is described in its variational formulation in order to
approximate its solution by the finite element method. The parameters used in the simulations
are taken from secondary sources, in order to compare results and deferences in the same
scenarios included in other models.

1. Introduction
There are different and multiple sources of pollution for water resources, among the most
important are: industrial plant waste, the expansion of cities and agriculture that emphasizes in
production and uses fungicides and pesticides that are transported by the runoff phenomenon
to the slopes of rivers and lagoons. Knowing the behavior of toxic agents that affect the aquatic
regions is a first step towards the recovery and sustenance of water resources. This article
aims to know the concentration and dynamics of toxic agents in a flat aquatic region, using the
diffusion-advection equation to model two sources of pollution, one in the center of the region
(point source of contamination) and another it is the source corresponding to the pollution due
to the runoff phenomenon at the border.

2. Framework
Environmental pollution is one of the biggest global problems, with water being the most affected
system [1–3], the pollution of water resources produced by industry is due to specific sources of
pollution, in these wastes there is a greater amount of synthetic organic compounds and toxic
metals such as: lead, mercury and cadmium [4,5]. On the other hand, urban expansion is a major
producer of waste, since all toxic substances, such as sewage and rain, are frequently thrown into
the water with oils and organic matter [3]. The modern agricultural industry that emphasizes
production, uses fungicides and pesticides, which are transported by the runoff phenomenon,
here runoff is the transport of existing toxic substances in the earth through the waters, especially
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rainy waters and , to a small extent, to the waters that come from the irrigation of crops [2,3,5,6].
The toxicity potential of pollutants produced by agriculture is important, since they have a high
toxic level of a non-biodegradable nature, such as: sodium, potassium, calcium, magnesium,
some salts (nitrates, carbonates, phosphates, sulfates), acids and solid particles [2].

An example of this is the coverage of large areas of water by higher density substances
such as oils and fats that reduce reoxygenation through the decrease in air-water interaction,
that is, less oxygen and more absorbing solar radiation, which affect photosynthetic activity
causing the death of the species that consume oxygen, another cause of the decrease in dissolved
oxygen is mechanical contamination, which consists mainly of the deposit of mineral particles
or organic [3, 6].

3. Mathematical model
The phenomenon of diffusion is based on the conservation law [7,8] which states that: The rate
of change of the concentration of particles per unit of time, is equal to the number of particles
that enter the system minus the number of particles that leave more or less the rate of growth
or degradation of the particles per unit of time [1]. Suppose that V(x, y) is the speed of the
fluid, with a flow J = cV, where c represents the concentration of particles [4,5], from law Fick
it is established that the flow is proportional to less the local gradient of the concentration,
with this expression of the flow the equation is obtained: ∂c/∂t = α∇2c ± σ it is the diffusion
equation [5, 7, 9]. It is denoted with α the diffusion coefficient of the toxic agent, then the term
α∇2c it represents the diffusion of the contaminant. Because pollutants move in an aquatic
environment, they experience an advective phenomenon, where v is the speed of the fluid, so
the advection in the model is represented by the term ν∇c, if σ is the degradation rate of the
toxic, it has to σc represents the loss of pollutant in a unit of time, as mentioned earlier, there
is a point source of contamination noted with F (x, y, t) = F . Thus Equation (1) that models
the space-temporal concentration of a toxic agent in an aquatic environment is:

∂c

∂t
− α∇2c+ ν∇c+ σc = F, (1)

where c = c (x, y, t): toxic agent concentration, σ: constant pollutant degradation coefficient,
α: diffusion coefficient of the toxic (considered constant), V : velocity field present in the fluid,
F : describes the point source of contamination considered in the environment Ω during J .
Equation (1) is called diffusion-advection equation, which can be rewritten as Equation (2).

∂c

∂t
= div (α∇c)− div (V c)− σc+ F, (2)

the initial condition is c (x, y, 0) = c0 (x, y) , (x, y) ε Ω and boundary conditions ∂Ω = Γ0∪Γ1,
where Γ0 presents conditions at the edge of the homogeneous Von Neumann type and Γ1 presents

the non-homogeneous Dirichlet condition, that is, ∂c
∂η

∣∣∣
Γ0

= 0, with η the outer normal unit vector

along the border Γ0 de Ω and c(x, y, t)|Γ1
= g(x, y), which represents the contamination by the

phenomenon of runoff from agricultural fields [10,11], then a model that describes the problem
of contamination is defined as Equation (3):

∂c
∂t = div (α∇c)− div (V c) + σc+ F,
c (x, y, 0) = c0 (x, y) , ∀ (x, y) ε Ω,
∂c
∂η

∣∣∣
Γ0

= 0, c(x, y, t)|Γ1
= g(x, y)∀t ε J.

(3)
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4. Variational formulation
Problem for Equation (3) is presented in its classic or strong formulation, with the aim of
approaching the solution, the formulation is used weak or variational using the derivative in the
sense of distribution [12–15]. Internal products are defined in L2 (Ω) as Equation (4).

(f | g) =

∫
Ω

f (x) g (x) ds. y (∇c‖∇v) =

∫
Ω

(
∂c

∂x

∂v

∂x
+
∂c

∂y

∂v

∂y

)
ds. (4)

Definition 1. Weak derived. Let β be a multi-index, u, v ∈ L1,Loc (Ω) and∫
Ω

u (x) ∂βη (x) dx = (−1)|β|
∫
Ω

v (x) η (x) dx,∀η ∈ C∞0 (Ω). Then v is called the weak partial

derivative of u in Ω and is denoted by ∂βu.

In the space H1
0 (Ω) =

{
u ∈ H1 (Ω) ; u |∂Γ1= 0

}
, the formulation in the sense of distributions

of Equation (2) is Equation (5).∫
Ω

∂c

∂t
vds =

∫
Ω

div (α∇c) vds−
∫
Ω

div (V c) vds−
∫
Ω

σcvds+

∫
Ω

Fvds, ∀v ∈ V (5)

Then, for the Green theorem, it has to Equation (6) is true as:∫
Ω

div (α∇v) vds = −
∫
Ω

α∇c · ∇vds+ α

∫
∂Ω

∂c

∂η
vdr. (6)

So, replacing Equation (6) in Equation (5) and considering internal products defined in L2 (Ω)
and V it is a vector field independent of time and space, in addition to the homogeneous von

Neumann type boundary condition ∂c
∂η

∣∣∣
Γ0

= 0, it has to
∫
∂Ω

∂c
∂ηvdr = 0, ∀v ∈ V, in this way the

formulation in the sense of distribution of the problem is given by Equation (7).(
∂c

∂t
| v
)

= −α (∇c‖∇v)− V (∇c | v) + σc+ F , ∀v ∈ V. (7)

5. Approximation of solution

5.1. Galerkin method
To find a solution c ∈ V of the Equation (7), a solution is sought ch ∈ Vh which is the closest to
the solution c ∈ V [9, 16,17], so that, the solution satisfies Equation (8) and Equation (9).

ch =
m∑
j=1

cj (t)ϕj (x, y) +
n∑

j=m+1

gj (t)ϕj (x, y) . (8)

∂ch
∂t

=

m∑
j=1

∂cj
∂t
ϕj (x, y) +

n∑
j=m+1

∂gj (t)

∂t
ϕj (x, y) , ∀ϕj (x, y) = ϕiεB. (9)

Now replacing Equation (8) and Equation (9) in Equation (7) and using the cj (t) = cj ,
vj (t) = vj notation, in addition, given the properties of the internal product and considering
that V is a vector field independent of time and space, we have the system given by Equation
(10).
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m∑
j=1

∂cj
∂t

(ϕj | ϕi) + α

m∑
j=1

cj (∇ϕj‖∇ϕi)

+V1

m∑
j=1

cj

(
∂ϕj
∂x
| ϕi
)

+ V2

m∑
j=1

cj

(
∂ϕj
∂y
| ϕi
)
−

m∑
j=1

cj (σϕj | ϕi) (10)

= −
n∑

j=m+1

∂gj
∂t

(ϕj | ϕi)− α
n∑

j=m+1

gj (∇ϕj‖∇ϕi) − V1

n∑
j=m+1

gj

(
∂ϕj
∂x
| ϕi
)

−V2

n∑
j=m+1

gj

(
∂ϕj
∂y
| ϕi
)
−

n∑
j=m+1

gj (σϕj | ϕi) + (F | ϕi) +

F | n∑
j=1

vjϕj

 , ∀ϕi ∈ B.

It show that Equation (10) corresponds to a linear system of ordinary differential equations in
the variable t, with the initial condition that in its variational formulation is given by Equation
(11).

(c0 (x, y) | ϕi) =
m∑
j=1

cj (0) (ϕj | ϕi) +
n∑

j=m+1

cj (0) (ϕj | ϕi) , ∀ϕi ∈ B. (11)

5.2. Finite elements
Finite elements method allows spatial discretization in the domain of interest, by building a mesh
to obtain a finite number of simple subdomains. To discretize the spatial variable, a rectangular
domain Ω is taken. Since the selected elements are second order [12–15,18,19], a hexagonal base
pyramid is constructed, as illustrated in the Figure (1).

Figure 1. Pyramid for finite elements.

Figure (1) is the base of Vh, whose elements are the test functions. The faces of the pyramid
are the ϕi functions, for i ∈ {1, . . . , n}, which are defined in Equation (12).

ϕi =



{x− xi−1}/∆x, x = xi−1; yi ≤ y ≤ yi+1

{yi+1 − y}/∆y, y = yi+1, xi−1 ≤ x ≤ xi,
{xi+1∆y − x∆y + yi∆x− y∆x}/{∆y∆x}, xi ≤ x ≤ xi+1, yi ≤ y ≤ yi+1,

{xi+1 − x}/∆x, x = xi+1, yi−1 ≤ y ≤ yi,
{y − yi−1}/∆y, y = yi−1, xi ≤ x ≤ xi+1,

{x∆y − xi∆y + y∆x− yi−1∆x}/{∆y∆x}, xi−1 ≤ x ≤ xi , yi−1 ≤ y ≤ yi.
(12)



VI International Conference Days of Applied Mathematics (VI ICDAM)

Journal of Physics: Conference Series 1514 (2020) 012004

IOP Publishing

doi:10.1088/1742-6596/1514/1/012004

5

Making use of the functions defined by Equation (12), internal products are calculated for
the triangles of the domain are given by Equation (13), Equation (14) and Equation (15) as.

(ϕj | ϕi) =
∆x∆y

24

 1 1
2

1
2

1
2 1 1

2
1
2

1
2 1

 and (∇ϕj‖∇ϕi) =
1

2


∆y

∆x
+

∆x

∆y
−∆y

∆x
−∆x

∆y

−∆y

∆x

∆y

∆x
0

−∆x

∆y
0

∆x

∆y

 . (13)

For the odd triangle you have Equation (14).

(
∂ϕj
∂x
| ϕi
)

=
∆y

6

 −1 1 0
−1 1 0
−1 1 0

 and

(
∂ϕj
∂y
| ϕi
)

=
∆x

6

 −1 0 1
−1 0 1
−1 0 1

 , (14)

and for the even triangle we have Equation (15).

(
∂ϕj
∂x
| ϕi
)

=
∆y

6

 1 −1 0
1 −1 0
1 −1 0

 and

(
∂ϕj
∂y
| ϕi
)

=
∆x

6

 1 0 −1
1 0 −1
1 0 −1

 . (15)

Equation (13), Equation (14) and Equation (15) are called submatrices of stiffness.

5.3. Crank Nicolson method
Crank Nicolson method discretizes the temporal variable [11,20,21] of the Equation (10), to use
this method, use is made of Equation (16).

cj (tn) '
c

(n+1)
j + c

(n)
j

2
, gj (tn) '

g
(n+1)
j + g

(n)
j

2

∂cj (tn)

∂t
=

c
(n+1)
j − c(n)

j

∆t
,
∂gj (tn)

∂t
=
g

(n+1)
j − g(n)

j

∆t
, (16)

Ap(n+1) = Bp(n) + D and c0 =
(
c0

1, c
0
2, ..., c

0
n

)
.

Where the stiff A, B and D matrices are shown in Equation (17).

aij = (1 +
σ∆t

2
) (ϕj | ϕi) +

α∆t

2
(∇ϕj‖∇ϕi) +

V1∆t

2

(
∂ϕj
∂x
| ϕi
)

+
V2∆t

2

(
∂ϕj
∂x
| ϕi
)

bij = (1− σ∆t

2
) (ϕj | ϕi)−

α∆t

2
(∇ϕj‖∇ϕi)−

V1∆t

2

(
∂ϕj
∂x
| ϕi
)
− V2∆t

2

(
∂ϕj
∂x
| ϕi
)

dij = −

[
∆t

g
(n+1)
j + g

(n)
j

2
(ϕj | ϕi) + α∆t

g
(n+1)
j + g

(n)
j

2
(∇ϕj‖∇ϕi) + V1∆t

g
(n+1)
j + g

(n)
j

2
(17)

(
∂ϕj
∂x
| ϕi
)

+ V2∆t
g

(n+1)
j + g

(n)
j

2

(
∂ϕj
∂y
| ϕi
)

+∆t
g

(n+1)
j + g

(n)
j

2
(σϕj | ϕi)

]
+ ∆t (F | ϕi) .
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6. Numerical results and discussion
This work considers a flat aquatic region with two sources of pollution, one point in the bottom
left and the other due to runoff as shown in Figure 2, Figure 3, Figure 4 and Figure 5. In [2,3,6]
only interior sources of the domain are modeled and assume that there is no contamination at the
border, which does not show the actual behavior of the concentration of pollutants, thus limiting
the comparison of pollution flows, runoff contamination affects all places in the region as shown
in Figure 4 and Figure 5, which is not evident in the results of [3,6]. As in [3,4,6,17] advective
movement has a greater influence on the behavior of the contaminant, Figure 2 and Figure 3
show that changing the velocity field changes the dynamic behavior of the contamination. The
parameters for these simulations were based in [6] where α = 0.5e−2, µ = 0.01, Vx = 0.001 and
Vy = 0.13, the convergence of the method is guaranteed by [22].

Figure 2. Pollutant in 50 days, Vx and Vy
positive.

Figure 3. Pollutant in 50 days, Vx positive and
Vy negative.

Figure 4. Contaminant contour in 50 days,
Vx and Vy positive.

Figure 5. Contaminant contour in 50 days,
Vx positive and Vy negative.

7. Conclusion
This study show that as the time increases, concentration of toxic at the point source is greater
than the pollution due to runoff, having non-zero boundary conditions allows to know the real
dynamics behavior of the toxic agents and do not limiting the comparison of contamination
flows, the pollution value is higher in short times both at the point source within the region
and at the border. The advective movement has a greater influence on the behavior of the
pollutant which shows that the model reflects the physical characteristics of the environment,
the concentration of pollutant is sensitive to the direction they can take winds, that is, the
movement of pollutants depends largely on the velocity field.
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