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Analysis of population genetic variation and structure is a common practice for genome-
wide studies, including association mapping, ecology, and evolution studies in several
crop species. In this study, machine learning (ML) clustering methods, K-means (KM),
and hierarchical clustering (HC), in combination with non-linear and linear dimensionality
reduction techniques, deep autoencoder (DeepAE) and principal component analysis
(PCA), were used to infer population structure and individual assignment of maize inbred
lines, i.e., dent field corn (n = 97) and popcorn (n = 86). The results revealed that the HC
method in combination with DeepAE-based data preprocessing (DeepAE-HC) was the
most effective method to assign individuals to clusters (with 96% of correct individual
assignments), whereas DeepAE-KM, PCA-HC, and PCA-KM were assigned correctly
92, 89, and 81% of the lines, respectively. These findings were consistent with both
Silhouette Coefficient (SC) and Davies–Bouldin validation indexes. Notably, DeepAE-
HC also had better accuracy than the Bayesian clustering method implemented in
InStruct. The results of this study showed that deep learning (DL)-based dimensional
reduction combined with ML clustering methods is a useful tool to determine genetically
differentiated groups and to assign individuals into subpopulations in genome-wide
studies without having to consider previous genetic assumptions.

Keywords: deep learning, genome-wide studies, machine learning, single-nucleotide polymorphisms,
dimensionality reduction

INTRODUCTION

Analysis of population structure and genetic variation is a common practice in genome-wide
studies and is an important guideline to understand and infer the evolutionary processes and the
demographic history in ecological and evolutionary studies (Stift et al., 2019). Knowledge of the
population genetic structure is very helpful in many applications, which plays an important role
for breeding purposes and selection strategies. In this sense, high-throughput DNA sequencing
technologies have allowed the generation of large sets of genomic data in diverse populations
routinely (Ho et al., 2019), which has been used to study patterns of genetic variation across the
genome and to characterize the evolutionary forces in different plant species (Padhukasahasram,
2014; Ho et al., 2019). For instance, markers based on single-nucleotide polymorphisms (SNPs)
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have provided a rapid way of delineating genetic structure and
of understanding the basis of the taxonomic discrimination,
providing novel information such as founder effects, bottlenecks,
evolutionary relationships, and migration history of natural
populations (Padhukasahasram, 2014; Shultz et al., 2016).

Population structure analysis is a major area of interest within
the field of genetics and bioinformatics (Alhusain and Hafez,
2018). In this sense, several bioinformatics methods have been
developed to examine the population structure in genetically
diverse plant germplasm based on high-throughput genomic
data. Among the methods currently available, the Bayesian
clustering algorithm developed by Pritchard et al. (2000) (i.e.,
STRUCTURE) is one of the most widely used population
analysis tools, which allows researchers to infer population
structure patterns in sample sets (Porras-Hurtado et al., 2013).
The underlying genetic model of this algorithm assumes that
populations are in Hardy–Weinberg equilibrium (Pritchard et al.,
2000), which is not met, for instance, in populations with high
levels of inbreeding. In this sense, Gao et al. (2007) proposed
an extension to the STRUCTURE algorithm denominated
InStruct, which eliminates the assumption of Hardy–Weinberg
equilibrium within populations and takes inbreeding or selfing
into account. This method applies a Bayesian inference to
simultaneously assign individuals into subpopulations but can
be very time-consuming. Another successful approach to infer
population structure has been implemented in the ADMIXTURE
software (Alexander et al., 2009; Alexander and Lange, 2011),
a maximum-likelihood-based method that updates the log-
likelihood as it converges on a solution for the ancestry
proportions and allele frequencies that maximize the likelihood
function (Alexander and Lange, 2011). Other authors have
emphasized the use of non-parametric methods such as K-means
(KM) and hierarchical clustering (HC) (Bouaziz et al., 2012;
Meirmans, 2012; Alhusain and Hafez, 2018). KM and HC
approaches correspond to machine learning (ML) methods
that do not require the assumptions of the Hardy–Weinberg
principle and use external dimension reduction techniques, such
as principal component analysis (PCA) (Kobak and Berens,
2019), commonly used in several data-intensive biological fields.
KM is an iterative descent algorithm that minimizes the within-
cluster sum of squares (Meirmans, 2012). On the other hand,
the HC method allows the formation of genetic groups to be
mutually exclusive, in which each cluster is distinct from each
other, and the members of each cluster are similar with respect
to the input information (Ward, 1963). Stift et al. (2019) found
that ADMIXTURE and KM were computationally faster than
STRUCTURE; however, ADMIXTURE had less power to detect
structure compared to STRUCTURE and KM clustering.

The analytical Bayesian inference-based methods
(STRUCTURE and InStruct) and the most traditional ML
algorithms require that the data provided need to be of numerical
type (Pritchard et al., 2000; Yokota and Wu, 2018). Label encoder
(LE) is a useful method to help normalize labels so that they can
transform non-numerical values into numerical values (Joshi
et al., 2016). In genomic data, for instance, Agajanian et al. (2019)
used LE to assign to each nucleotide a unique numeric data
value. Other ML methods [e.g., deep autoencoder (DeepAE),

a likelihood-free inference framework] consider a framework
in which the information of the input variables is compressed
and subsequently reconstruct the input data, minimizing the
loss function. In this sense, the deep learning (DL) approach is
a class of neural networks and has been an active area of ML
research, emerging as a powerful tool in genetics and genomics
studies, e.g., schizophrenia classification through datasets of SNP
and functional magnetic resonance imaging (Li et al., 2020),
gene expression prediction from SNP genotypes (Xie et al.,
2017), MADS-box gene classification system for angiosperms
(Chen et al., 2019), and RNA secondary structure prediction
(Zhang et al., 2019) and to predict quantitative phenotypes from
SNPs (Liu et al., 2019). Unlike the traditional artificial neural
network, DL algorithms consider many hidden layers during
the network training (Xie et al., 2016). The advantages of the
DL approach have been well described by Qu et al. (2019) and
can be summarized as the capacity of (1) learning from data
without prediction features, (2) learning from increasingly large
and high-dimensional datasets, and (3) capturing non-linear
dependencies in genetic sequences. Therefore, in this study,
a genome-wide data assessment of maize inbred lines was
performed using the DL (DeepAE) approach, combined with
ML methods (HC and KM) and a Bayesian clustering approach
(InStruct), to infer population genetic structure and assign
individuals into each subpopulation. A better understanding of
the use of these novel methods could provide recommendations
for genetic diversity and differentiation studies.

MATERIALS AND METHODS

The step-by-step description of the proposed methodology for
the clustering of populations, through the use of DL and ML,
is illustrated in Figure 1. The respective codes are available in
Supplementary Data Sheet S1. The first step is to preprocess SNP
dataset and apply DeepAE with two layers in both the encoder
and decoder, without considering the input and output. The
second step is based on applying ML clustering algorithms in an
unsupervised way based on the data obtained from the DeepAE
in order to group and identify subpopulations.

Genotyping and Data Processing
These inbred lines correspond to a panel of 183 maize genotypes
from the Department of Agronomy of the State University of
Maringá, which consist of 97 dent field corn and 86 popcorn
genotypes (for more details, see Supplementary Data Sheet
S2). Seedlings were grown in a growth chamber at 27/20◦C
day/night temperatures and a 12-h photoperiod. The youngest
leaves of five plants were sampled from each genotype ∼30 days
after germination. The DNA samples were sent to the Genomic
Diversity Institute of Cornell University for SNP discovery via
genotyping-by-sequencing (GBS), which is described in Elshire
et al. (2011). The TASSEL 5.2 software (Bradbury et al., 2007)
was used to align the raw data of GBS with the Zea mays version
AGPV3 reference genome (B73 RefGen v3), resulting in a total of
1,014,070 SNPs. Subsequently, these SNPs were filtered through
TASSEL considering a minor allele frequency > 0.15 and the
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FIGURE 1 | Overview of the deep autoencoder (DeepAE) system and population clustering analysis from a large single-nucleotide polymorphism (SNP) dataset.
(A) Schematic representation of the entity system. Input data are composed of a matrix of n samples (rows) and k SNPs (columns). Through autoencoder,
categorical variables, i.e., the SNPs and samples, were represented as an m-dimensional vector. (B) Samples are projected into m dimensional sample entity vector
space. The DeepAE learned the feature of the sample solely from input matrix, such that similar samples are clustered in close proximity. (C) The t-distributed
stochastic neighbor embedding (t-SNE) representation of sample entity matrix from the SNP dataset transformed by DeepAE. The 183 inbred lines are labeled with a
different color according to subpopulations of maize (dent corn and popcorn). (D) Population clustering analysis through unsupervised clustering techniques.

absence of missing data, yielding a final subset of 4,812 SNPs
(distributed on all chromosomes).

Dimensionality Reduction Methods
Unsupervised Learning Using Deep Autoencoder
DeepAE was applied to find a mathematical representation of
SNPs and to reduce the dimensionality of the dataset. This
architecture contains multiple encoding and decoding stages
made up of a sequence of encoding layers followed by a stack
of decoding layers. First, the SNPs were encoded to a numerical
representation through one hot encoding process, as follows:
A: [1,0,0,0], T: [0,1,0,0], G: [0,0,1,0], C: [0,0,0,1]. The depth
of the network was varied from one to four hidden layers in
order to minimize the loss function (cross-entropy function;
Supplementary Data Sheet S3), in which the best results were
obtained considering two hidden layers. Therefore, DeepAE was
performed considering the following parameters: an entrance of

4,812 features corresponding to SNP markers (represented by
one hot encode), two hidden layers with 2,000 and 700 neurons,
respectively, in both the encoder and decoder, a bottleneck
hidden layer of 40 neurons, and a learning rate of 0.001. Details
about DeepAE are shown in Supplementary Data Sheet S3. The
Adam optimizer was used to minimize the loss function (cross-
entropy function). The rectified linear unit (ReLU) was used as
the activation function. DeepAE was implemented in python 3.7
language using the libraries Keras 2.2.4 and TensorFlow 1.14.0.

Principal Component Analysis
The PCA describes the variation of a dataset in terms of a
set of uncorrelated variables, where each of these is a linear
combination of the original variables. These new variables are
sorted in descending order of importance, where the first variable
(or first principal component) accounts for a majority of the
variation in the original data, and the following variables account
for a large amount of the remaining variation of the data that
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is not correlated with the previous variables. The PCA was
performed in TASSEL 5.2 (Bradbury et al., 2007).

Visualization of Reduced Data by Deep
Autoencoder
The t-distributed stochastic neighbor embedding (t-SNE) is
a technique that allows visualization of high-dimension data
giving each data point a location in a low dimension (Maaten
and Hinton, 2008). This method maps the different high-
dimension instances into new low-dimension instances keeping
up the similarities found in the original data. Encoded
SNPs with DeepAE were visualized by two-dimensional t-SNE
implemented with perplexity = 30, iterations equal to 1,000, and
a learning rate of 200.

Clustering Analysis
Three types of unsupervised clustering algorithms were applied:
KM (Macqueen, 1967), HC (Abbas, 2008), and InStruct (Gao
et al., 2007). Details about these three clustering algorithms are
shown in Supplementary Data Sheet S3. The entrance for these
methods corresponds, on one hand, to the SNP genomic data
represented with LE and, on the other hand, to the encoded
SNP data with dimensionality reduction techniques: DeepAE and
PCA. Specifically, LE is a numerical representation to transform
non-numerical labels to numerical labels (Joshi et al., 2016); in
this case, the SNP markers were processed as follows: A:[0],
T:[1], G:[2], C:[3]. The genomic data represented by LE and
the dimension reduction techniques were used as inputs in the
ML clustering methods, while the Bayesian method only used
the dataset codified with LE (Supplementary Figure S4). The
optimal number of clusters was determined by two validation
metrics: Silhouette coefficient (SC; Rousseeuw, 1987) and Davies–
Bouldin index (DBI; Davies and Bouldin, 1979) for the ML-
based clustering algorithms (details about evaluation metrics
are shown in Supplementary Data Sheet S3). On the other
hand, the optimal number of clusters (K) in Bayesian-based
clustering algorithm (InStruct) was determined with the highest
1K method, as proposed by Evanno et al. (2005), and the lowest
value of deviance information criterion (DIC) (Gao et al., 2007).

RESULTS

Population Clustering Analysis With
K-Means, Hierarchical Clustering, and
InStruct
The results of clustering analysis with KM and HC varied
depending on the data preprocessing algorithms being studied
(i.e., LE, DeepAE, and PCA). The results of KM and HC
methods showed that LE was less accurate than DeepAE and
PCA according to SC and DBI measures (Table 1). In fact, these
validation indexes (SC and DBI) were ∼10 and ∼8 times higher
for DeepAE and PCA, respectively, than LE, when K = 2. The
SC values showed that the reliability of clusters generated by the
three data preprocessing algorithms decreases as the amount of K
clusters increases (Table 1), achieving the best accuracy measures

for K = 2. Consistently, in the three preprocessing algorithms,
the DBI was higher when the number of clusters increased.
Moreover, KM and HC in combination with DeepAE and PCA
showed the best results in terms of accuracy when K = 2. The
high values of SC obtained for PCA and DeepAE in combination
with both clustering methods (close to 1; Table 1) indicate that
an inbred line is well matched to its own genetic cluster and
poorly matched to the neighboring group or subpopulation. On
the other hand, the SC value for LE in combination with HC
(LE-HC) was close to zero and achieved the same value for
K = 2, 4, and 5, while DBI for LE-HC revealed that the optimal
number of clusters was K = 4. According to these results, through
the classical representation (LE), it was not possible to achieve
a consistent clustering performance with neither ML clustering
method (KM and HC), thus this representation was discarded
from the posterior cross-tab analysis. In the case of DeepAE or
PCA, it was possible to achieve the optimal number of clusters.

The Bayesian clustering analysis with InStruct indicated that
the 183 inbred lines were grouped into two clusters (K = 2)
according to the lowest DIC and the highest second-order change
rate of the probability function with respect to K (1K). This result
was expected, since the inbred lines come from two well-defined
maize subpopulations (i.e., dent corn and popcorn), which was
confirmed by DIC and 1K values obtained from InStruct and
both SC and DBI validation measures in the clusters formed by
both ML clustering methods in combination with DeepAE and
PCA (Table 1). In this study, the majority of the dent corn lines
were grouped in cluster 1, whereas the majority of popcorn lines
were assigned to cluster 2.

A simple cross-tab analysis was performed to evaluate
the ability of clustering and preprocessing methods to assign
individuals to their putative subpopulation (i.e., dent corn and
popcorn). The results of this analysis are shown in Table 2
for KM and HC ML clustering algorithms in combination
with DeepAE and PCA dimension reduction algorithms and
the Bayesian clustering method implemented in InStruct.
DeepAE combined with both HC (DeepAE-HC) and KM
(DeepAE-KM) methods grouped the smallest amount of popcorn
lines within cluster 1 (which should be composed of only
dent corn lines). The Bayesian approach implemented in
InStruct grouped 17 popcorn lines within cluster 1, while
PCA combined with HC (PCA-HC) and KM (PCA-KM)
grouped the greatest amount of popcorn lines together with
dent corn lines (cluster 1) (Table 2). Interestingly, the SC
validation index was higher in DeepAE than PCA (for both
clustering methods), which implies that average within-cluster
distances were low (high compactness in clusters), whereas
between-cluster distances were high (high separation between
clusters). It should be noted that the Bayesian clustering
method (InStruct) and ML clustering algorithms (HC and KM)
grouped coincidently eight popcorn lines into cluster 1, i.e., the
cluster containing dent corn lines. Overall, DeepAE-HC was
the most effective method to assign individuals to the clusters
(96% of correct individual assignments), whereas DeepAE-KM,
PCA-HC, PCA-KM, and InStruct assigned correctly 92, 89,
81, and 91%, respectively, of the lines into their respective
clusters (Table 2).
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TABLE 1 | Validation indexes for the optimal number of clusters (K) according to Silhouette coefficient (SC) and Davies–Bouldin index (DBI).

K K-means Hierarchical clustering

LE PCA DeepAE LE PCA DeepAE

SC DBI SC DBI SC DBI SC DBI SC DBI SC DBI

2 0.08 2.93 0.67 0.39 0.78 0.30 0.08 2.94 0.67 0.34 0.78 0.30

3 0.05 3.59 0.61 0.55 0.74 0.39 0.07 2.69 0.65 0.38 0.73 0.38

4 0.05 3.58 0.56 0.55 0.57 0.59 0.08 2.52 0.59 0.49 0.59 0.55

5 0.04 3.53 0.56 0.66 0.51 0.62 0.08 2.72 0.52 0.5 0.56 0.55

6 0.05 3.79 0.48 0.69 0.51 0.61 0.05 2.95 0.42 0.54 0.48 0.58

7 0.05 3.71 0.47 0.69 0.49 0.62 0.05 2.92 0.46 0.69 0.47 0.63

8 0.06 3.37 0.37 0.81 0.47 0.67 0.06 3.35 0.38 0.64 0.46 0.63

9 0.06 3.49 0.39 0.82 0.44 0.68 0.06 3.15 0.37 0.63 0.44 0.71

The clusters were formed by machine learning (ML) clustering methods, K-means, and hierarchical clustering, in combination with the following data preprocessing
algorithms: label encoder (LE), principal component analysis (PCA), and deep autoencoder (DeepAE).

TABLE 2 | Cross-tab analysis among subpopulations of maize (popcorn and dent
corn) and clusters predicted by machine learning (ML) clustering methods in
combination with dimensionality reduction techniques.

Methods Predicted Cluster 1 Cluster 2 %CA*

DeepAE-KM Cluster 1 97 15 92%

Cluster 2 0 71

DeepAE-HC Cluster 1 97 8 96%

Cluster 2 0 78

PCA-KM Cluster 1 97 34 81%

Cluster 2 0 52

PCA-HC Cluster 1 97 20 89%

Cluster 2 0 66

InStruct Cluster 1 97 17 91%

Cluster 2 0 69

Clusters 1 and 2 represent the dent field corn (n = 97) and popcorn (n = 86)
subpopulations of maize, respectively. *Percentage of inbred lines of maize correctly
assigned to the clusters.

Visualization of the Genetic Structure
With t-Distributed Stochastic Neighbor
Embedding and Principal Component
Analysis
Figure 2 shows the visualization with t-SNE (for DeepAE)
and the PCA representation for SNP data. t-SNE and PCA
clearly separated the inbred lines into two clusters, which
correspond to the subpopulations of popcorn (blue) and dent
corn (orange) (Figure 2). The t-SNE method allowed to define
the clusters with any of its dimensions (1 and 2), while the PCA
only separated the clusters with dimension 1. Moreover, t-SNE
clustered the individuals of each putative subpopulation closer
together than the PCA method. In this sense, t-SNE preserved
the local structure (more than the larger-scale structure)
of data by matching pairwise similarity distributions in the
higher-dimensional space (original data) in a lower-dimensional
projected space (Chan et al., 2018), and thus, as opposed to PCA,
t-SNE grouped the samples in a low-dimensional space, while
keeping the distributions of original data space.

DISCUSSION

Analysis of population genetic structure is a major area of
interest within the field of genetics and bioinformatics, which is a
common practice in genome-wide studies, including association
mapping, ecology, and evolution studies in crop species such
as maize (Li et al., 2019; Mafra et al., 2019; Maldonado et al.,
2019; Wang et al., 2019). The present study proposed an ML-
based analysis of population structure and individual assignment
usually performed in several data-intensive biological fields.
According to the results, HC in combination with the two data
preprocessing algorithms (DeepAE and PCA) presented higher
accuracy in assigning maize lines to their respective clusters as
compared to KM. These findings agree with a previous study
by Kaur and Kaur (2013), who reported that the hierarchical
algorithm provides better results and higher quality than KM.
Additionally, the results of this study were consistent with the
findings of previous research, indicating that dent corn and
popcorn lines from Brazilian germplasms are grouped into two
genetically differentiated clusters (Coan et al., 2018; Camacho
et al., 2019; Maldonado et al., 2019; Senhorinho et al., 2019). In
this regard, the results of this study showed that the DeepAE-
based data preprocessing had better accuracy values than those
achieved by PCA. In this sense, PCA-HC and PCA-KM had a
high number of lines incorrectly assigned to cluster 1 (20 and 34,
respectively). On the other hand, InStruct showed an accuracy
value lower than DeepAE-HC and DeepAE-KM when assigning
maize lines. In this sense, Stift et al. (2019) found that InStruct
revealed more inconsistency than KM in the clustering results,
which was derived from a lack of convergence across replicate
runs of the algorithm.

The conventional clustering methods, e.g., self-organizing
map algorithm (Kohonen and Somervuo, 1998), Gaussian
mixture models (Reynolds, 2015), KM (Arthur and Vassilvitskii,
2007), and HC (Bouaziz et al., 2012), usually have poor
clustering performance on high-dimensional data due to
high computational complexity (Min et al., 2018). For this
reason, dimensionality reduction methods have been widely
studied to represent the raw data into a low-dimensional
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FIGURE 2 | Visualization of the genetic structure of inbred lines of maize with t-distributed stochastic neighbor embedding (t-SNE) for the DeepAE (A) and
representation of principal component analysis (PCA) (B) for single-nucleotide polymorphism (SNP) data. The colored dots orange and blue represent different inbred
lines from the two subpopulations of maize (dent corn and popcorn, respectively).

space to ensure that the data are easier to separate when
using clustering methods. The most popular methods for
dimensionality reduction include linear transformation with
PCA and non-linear transformation with autoencoder (Vincent
et al., 2008; Chazan et al., 2019; Kobak and Berens, 2019).
However, the non-linear nature of an autoencoder has been
shown to reconstruct complex data more accurately than
PCA (Xie et al., 2016). Sakaue et al. (2020) pointed out
that the main linear technique for dimensionality reduction,
PCA, was not sufficient to fully capture the fine and subtle
genomic structure within a Japanese population (n = 169,719),
while non-linear dimensionality reduction methods (t-SNE
and uniform manifold approximation and projection) could
detect a fine and discrete population structure with a high
resolution. Tan et al. (2014) showed that the use of denoising
autoencoders was efficient to identify and extract complex
patterns from a large collection of breast cancer gene expression
data, which allowed for successfully constructed features
that contain both clinical and molecular information. In
this sense, Yue and Wang (2018) pointed out denoising
autoencoders are effective in extracting biological insights,
since the reconstruction loss of autoencoder ensures that
the network learns a feasible representation and avoids
obtaining trivial solutions. On the other hand, Almotiri et al.
(2017) showed that the non-linear autoencoder achieved better
accuracy than the linear PCA method in the classification
of handwritten numerals. In accordance with the present
study, Manning-Dahan (2018) observed that autoencoder had
an accuracy 68% higher than PCA, with much less false
positives found in the classification of images. This author
also pointed out that PCA creates linear maps and, thus,
is limited to learn linear relationships between variables,
whereas autoencoders can be used for encoding and decoding
large datasets with the flexibility of learning both non-linear
and linear mappings. Xie et al. (2016) also pointed out
that KM has a better performance when it is employed
on a set of data preprocessed by autoencoder than when
they have not been preprocessed. Therefore, a key aspect
of the methodology proposed in this study is the correct
mathematical representation of the SNP dataset, which is not
achieved with a classical technique such as LE or PCA but

is achieved through the implementation of more complex
techniques, such as DeepAE.

Artificial neural network models have been used before
in order to genetically evaluate crop germplasm collections,
such as maize (Ferreira et al., 2018; Kulka et al., 2018)
and grapevine (Costa et al., 2020), in which the clustering
analysis was based upon competitive learning-based neural
networks. This alternative method was able to analyze population
structure based on not only bi-allelic but also multi-allelic
data (Peña-Malavera et al., 2014; Ferreira et al., 2018) and has
been demonstrated to be computationally faster than MCMC
methods (Nikolic et al., 2009) and does not consider the
assumption of Hardy–Weinberg equilibrium in the population
being studied (Ferreira et al., 2018). In this sense, the
ML algorithms required less time for its run as compared
to InStruct. ML clustering algorithms in combination with
DeepAE or PCA dimension reduction algorithms require
approximately 3 s for execution, while with InStruct, the
time required was about 3 weeks. InStruct is based on
the Markov chain method for parameter estimation, which
is computationally time-consuming with respect to other
unsupervised clustering methods (Gao et al., 2007; Stift
et al., 2019). It should be noted that the artificial neural
networks have the advantage of being a non-parametric
method, which does not require detailed information about
the physical processes being modeled and is able to analyze
data containing missing data (Azevedo et al., 2015; Costa
et al., 2020). Interestingly, our results confirm that DeepAE
neural networks provide precise results in the identification of
genetically differentiated groups and the assignment of lines into
subpopulations (Table 2).

On the other hand, the t-SNE algorithm, in combination with
DeepAE data, was able to visually identify both subpopulations of
maize (Figure 2). This is of great relevance since it is the starting
point in the unsupervised clustering algorithms and identifying
clusters. Kobak and Berens (2019) pointed out that when applied
to high-dimensional but well-clustered data, t-SNE tends to
produce a visualization with distinctly isolated clusters, which
often are in agreement with the clusters found by a dedicated
clustering algorithm. Also, these authors mentioned that the
combination of t-SNE with a variational autoencoder better
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preserves the global structure of the data and produces
more interpretable visualizations than standard t-SNE. In this
sense, this study found that t-SNE was better than PCA
in preserving the local structure by grouping genotypes of
each putative subpopulation closer together. Moreover, t-SNE
could separate the subpopulations with any dimension (1 and
2), while a PCA separated the subpopulations only with the
first dimension.

Finally, the use of the novel dimensionality reduction
method, DL, combined with ML clustering methods
allowed to assign popcorn and dent corn lines into their
respective maize subpopulations. This analytical methodology
can be applied to uncover the genetic structure in
diverse populations worldwide, without having to consider
previous genetic assumptions such as Hardy–Weinberg and
linkage disequilibrium.
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