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Abstract. This article provides a tool that can be used in the exact sciences to obtain good
approximations to reality when noisy data is inevitable. Two heuristic optimization algorithms
are implemented: Simulated Annealing and Particle Swarming for the determination of the
extreme learning machine output weights. The first operates in a large search space and at each
iteration it probabilistically decides between staying at its current state or moving to another.
The swarm of particles, it optimizes a problem from a population of candidate solutions, moving
them throughout the search space according to position and speed. The methodology consists
of building data sets around a polynomial function, implementing the heuristic algorithms and
comparing the errors with the traditional computation method using the Moore–Penrose inverse.
The results show that the heuristic optimization algorithms implemented improve the estimation
of the output weights when the input have highly noisy data.

1. Introduction
A basic problem in science is to create prediction models from observations that are subject
to errors. These prediction models do not necessarily have to approximate exactly the original
data, since noise can take unwanted characteristics and avoid showing the fundamental. One of
the techniques for obtaining prediction models are artificial neural networks, which can find
nonlinear relationships between data sets through learning algorithms, obtaining models of
complex problems. The extreme learning machine has become the most used algorithm for
its calculation speed, however it needs many neurons in the hidden layer to find good models.

The extreme learning machine consists of randomly initializing the weights of the hidden
network layer and calculating the output weights using the Moore-Penrose inverse. In this
sense, the objectives of this work are: first to show that the estimation error with the Moore-
Penrose inverse increases as the noise in the data increases and second that the hueristic
optimization processes: simulated annealing and particle swarm improve the robustness of the
extreme learning machine for highly noisy data. Heuristic algorithms are adopted because they
make little or no assumption about the problem being optimized and can search in large spaces,
candidates for optimal solutions at a low computational cost.

The noisy data used to validate the hypotheses are generated around a polynomial curve,
since they allow studying different scenarios by increasing the number of network inputs as a
function of on the degree of the polynomial. Select a 70% of the data is randomly for the network
training and 30% for the test; the latter is used to validate the effectiveness of each method.



VI International Conference Days of Applied Mathematics (VI ICDAM)

Journal of Physics: Conference Series 1514 (2020) 012007

IOP Publishing

doi:10.1088/1742-6596/1514/1/012007

2

2. Background

2.1. Artificial neural networks
The artificial neural networks (ANNs) is based on a collection of connected units or nodes
called artificial neurons, which are connected to each other to transmit signals. In the links the
output value of the previous neuron is multiplied by a weight value and can increase or inhibit
the activation state of neighboring neurons. Moreover, in the exit of the neuron there may be a
limiting function or threshold which modifies the result or imposes a limit that must be exceeded
before spreading to another neuron, this is known as the activation function [1].

The ANNs have been used successfully in various fields of knowledge, since through training
the network, complex relationships between inputs and outputs are achieved by adjusting the
weights of the connections between neurons is accomplished. Therefore, the training of a neural
network can be seen as an optimization process whose objective is to find a set of weights that
minimizes the error produced by the network on the training data set [1, 2].

2.2. Extreme learning machine
Many papers have been developed to obtain fast and precise algorithms in the supervised training
of single layer feedforward network (SLFN), being the extreme learning machine (ELM) one of
the most used for its computation speed [3, 4]. The ELM algorithm for an SLFN network with
m neurons can be expressed mathematically as the Equation (1).

m∑
i=1

βif(wixj + bi) = yj , 1 ≤ j ≤ n, (1)

where (xi, yi) is the set of n differents samples (1 ≤ i ≤ n, with xi ∈ Rp and yi ∈ R), βi
output weights, f activation function, wi the weights of the hidden layer y bi the biases. The
Equation (1) can be written in matrix form Hβββ = y (Equation (2)).

H =

 f(w1x1 + b1) · · · f(wmx1 + bm)
... · · ·

...
f(w1xn + b1) · · · f(wmxn + bm)

 , βββ = (β1, ...βm)T , y = (y1, ..., yn)T . (2)

The matrix H (Equation (2)) is called the hidden layer output matrix of the neural network;
the ith column of H is the ith hidden neuron’s output vector with respect to inputs x1,x2, ...,xn.
The ELM calculate the output weights of the SLFN network performing the following steps:

(i) Initialize randomly wi y bi, i = 1, 2, 3, ...,m.

(ii) The ANN is expressed as
∑m

i=1 βif(wixj + bi) = yj , 1 ≤ j ≤ n.

(iii) Calculated the output weights by means of βββ = H†y,

where H† is the Moore–Penrose inverse of H and corresponds to the solution of ordinary least
squares for a regression problem. The ELM starts the weights of the hidden layer randomly,
this produces an extremely fast training algorithm compared to learning machines such as the
Multilayer Perceptron (MLP) and the support vector machine (SVM) [5]. However, the ELM
networks require many neurons in the hidden layer to find good models.

In recent years, improvements to the ELM algorithm have been proposed under the
imperfection situation. They can be grouped into two categories: incremental and pruning
strategies. For incremental strategy, the model begins with a small initial network and
then gradually adds new hidden nodes until the desired accuracy is achieved. Some notable
incremental algorithms are: I-ELM [4], EI-ELM [6], B-ELM [7], EB-ELM [8]. For pruning
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strategy, the model begins with a larger network than necessary and then cuts the redundant
or less effective hidden nodes. One notable destructive algorithms is the OP-ELM [9].

Traditional ELM training algorithms compute the output weights through the Moore-Penrose
inverse (pseudoinverse). In this work, it is shown that the estimation error with the pseudoinverse
is increased as the noisy data increases. This is why using the heuristic optimization algorithms:
simulated annealing and swarm of particles in the determination of the output weights to
minimize the error. The algorithms are described in section 2.3 and section 2.4.

2.3. Simulated annealing
The algorithm simulated annealing (SA) is inspired by metal annealing, where means of heating
and controlled cooling of a material it is possible to increase the size of its crystals and reduce
its defects. Annealing simulation can be used to find an approximation of a global minimum for
a function with many variables [10,11].

The notion of slow cooling implemented in the simulated annealing algorithm is interpreted as
a slow decrease in the probability of accepting worse solutions as the solution space is explored.
In general, the simulated annealing algorithm at each time step randomly selects a solution
close to the current one, the algorithm measures its quality and then decides to pass or keep
the solution. During the search, the temperature decreases progressively from an initial positive
value to zero and affects both probabilities: at each step, the probability of moving to a better
solution remains at 1 or changes to a positive value; On the other hand, the probability of
moving to a non optimal solution progressively changes towards zero [11–14]. The steps for the
simulated annealing algorithm are shown in the Algorithm 1.

Algorithm 1. Heuristic optimization process: simulated annealing [14].

Input: ProblemSize, iterationsmax, tempmax
Output: Pgbest

Scurrent ← CreateInitialSolution (ProblemSize);
Sbest ← Scurrent;
for i = 1 to iterationsmax do

Si ← CreateNeighborSolution (Scurrent);
tempcurr ← CalculateTemperature (i, tempmax);
if Cost (Si) ≤ Cost (Scurrent) then

Scurrent ← Si;
if Cost (Si) ≤ Cost (Sbest) then

Sbest ← Si;
end

else if Exp
(
Cost(Scurrent)−Cost(Si)

tempcurr

)
> Rand() then

Scurrent ← Si;
end

end

end
Return Sbest

2.4. Particle swarm optimization
The heuristic of particle swarm optimization (PSO) was developed by Kennedy and Eberhart
when studying the social transport observed in swarms of insects and fish banks; Such social
behavior is based on the transmission of the experience of each individual to the others in the
group, which results in a synergistic process that allows individuals to move in a search space
in an optimal way according to their needs. PSO heuristics has proven very efficient in solving
optimization problems with rapid convergence rates [14–16].
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Basically, the PSO heuristic consists of an iterative algorithm based on a population of
individuals called swarm, in which each individual, called a particle, moves in the decision space
in search of optimal solutions. The movements of the particles are guided by their own experience
in the search space as well as by the best position known throughout the swarm. When better
positions are discovered, these will guide the swarm movements. The process is repeated and in
doing so an optimal solution is eventually discovered.

The pseudocode for PSO optimization process is shown in the Algorithm 2, for which the
following assumptions are taken into account: Populationsize is the number of particles in the
swarm, each with a position Pposition ∈ Rn and a speed Pvelocity ∈ Rn in the search space; Ppbest

the experience where the best position of each particle was obtained and Pgbest the best position
of the all swarm.

Algorithm 2. Heuristic optimization process: particle swarm [14].

Input: ProblemSize, Populationsize
Output: Pgbest

Population ← ∅;
Pgbest ← ∅;
for i = 1 to Populationsize do

Pvelocity ← RandomVelocity();
Pposition ← RandomPosition(Populationsize);
Pcost ← Cost(Pposition);
Ppbest ← (Pposition);
if Pcost ≤ Pgbest then

Pgbest ← Ppbest;
end

end
while ¬StopCondition() do

foreach P ∈ Population do
Pvelocity ← UpdateVelocity (Pvelocity, Pgbest, Ppbest);
Pposition ← UpdatePosition (Pposition, Pvelocity);
Pcost ← Cost (Pposition);
if Pcost ≤ Ppbest then

Ppbest ← Pposition;
if Pcost ≤ Pgbest then

Pgbest ← Ppbest;
end

end

end

end
Return Pgbest

3. Materials and methods
Matlab software is used for the implementation of the monolayer neural network. Training and
test data for the network is generated with the Matlab rand command around a polynomial
function. The robustness validation against the noise of the SA and PSO heuristic algorithms
is performed by studying the error as a function of on the noisy data. In addition, different
scenarios for the data are considered increasing the degree of the polynomial.

The following steps describe the process to the construction of noisy data:

(i) A polynomial function y = p(x) is defined, where x is the input vector and y is the required
output.
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(ii) With the instruction R = r
(
2 rand

([
length(x) 1

])
− 1
)

a R vector of random numbers
with uniform distribution between −r and r is generated, it of the same size of the vector
x; r defines the radius of the noise in the data.

(iii) With previous steps the output with noise T = y +R is obtained.

3.1. Extreme learning machine algorithm and heuristic optimization processes
For the training of the neural network 400 data are used, of which 70% are randomly chosen
for the training and the remaining 30% for the test. Then the output weights of the network
are calculated with the pseudoinverse and with the optimization algorithms SA and PSO with
cost function the mean square error. Finally the errors in the test of each of the methods are
compared.

4. Results
The following parameters are used to obtain the results: 15 neurons and 400 data generated
around a polynomial of degree 50 (50 descriptors) with a noise of radius 0.1 and 0.3. Table 1
shows the root mean square error (RMSE) in the test and the execution time in determining
the weights of the hidden layer of the neural network as indicative of the performance of the
inverse of Moore-Penrose and the optimization algorithms SA and PSO. The table shows that
using noisy data of radius 0.1 the pseudoinverse delivers good models in a low time, however
when the noise radius is increased to 0.3 the pseudoinverse loses accuracy. Nevertheless, the
proposed algorithms make better approximations to the real curves using noisy data of radius
0.3, having a greater cost in time.

Table 1. Performance results of the Moore-Penrose inverse and the proposed
optimization algorithms AS and PSO for the determination of the output weights
using noisy data of radius 0.1 and 0.3.

Noise radius
Pseudoinverse Simulated annealing Particle swarm

Time (s) RMSE Time (s ) RMSE Time (s) RMSE

0.1 0.017 0.020 3.654 0.035 0.402 0.025
0.3 0.019 0.066 6.706 0.041 4.348 0.036

The test behavior for each of the optimization processes is shown in the Figure 1 and the
Figure 2. For a noise of radius 0.1 the three methods have good approximations as shown
in Figure 1(a), Figure 1(b) and Figure 1(c), however the pseudoinverse generates a better
fit according to Figure 1(a). For a noise of radius 0.3, the SA and the PSO have good
approximations to the real model as shown in Figure 2(b) and Figure 2(c), but the model
generated by computing the output weights of the ELM algorithm with the pseudoinverse begins
to oscillate as shown in Figure 2(a), which leads to obtaining unreliable models.

The above shows the efficiency of the heuristic algorithms for particular cases (noise radius
0.1 and 0.3), now a general study is done of the behavior of the RMSE in function of noise
radius for each of the optimization processes. The Figure 3 corresponds to the evolution of the
RMSE, where it is observed that for low noisy data (noise radius less than 0.2) the pseudoinverse
generates good models given that it presents the least error. However, it loses precision as the
noise increases. In the SA and PSO optimization algorithms the growth of the RMSE as a
function of noise is significantly lower compared to the pseudoinverse.

The foregoing shows that the ELM algorithm with the pseudoinverse has good results as long
as the data have little noise. Though a better the ELM performance to highly noisy data can
be improved using the SA and PSO heuristic algorithms.
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Now the behavior of the error in the test is analyzed when the number of descriptors
changes (varying the degree of the polynomial) for a noise of radius 0.2 since that is where
the psudoinverse loses precision. The Figure 4 shows a bar chart corresponding to the test error
as a function of the number of descriptors, where it is observed that the pseudoinverse tends to
produce a greater error.

(a) (b) (c)

Figure 1. The test behavior of each optimization process in the calculation of the output
weights of the ELM algorithm for a noisy data of radius 0.1. (a) pseudoinverse, (b) simulated
annealing, and (c) particle swarm.

(a) (b) (c)

Figure 2. The test behavior of each optimization process in the calculation of the output
weights of the ELM algorithm for a noisy data of radius 0.3. (a) pseudoinverse, (b) simulated
annealing, and (c) particle swarm.
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5. Conclusion
The classic ELM algorithm using Moore Penrose inverse loses precision for highly noisy data,
however, by implementing the SA and PSO heuristic optimization algorithms, the robustness of
ELM is achieved for noisy data. Thus, different investigations can use this tool to obtain good
models when noisy data is inevitable.
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