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Abstract: Asthma is one of the most common chronic diseases around the world and represents
a serious problem in human health. Predictive models have become important in medical
sciences because they provide valuable information for data-driven decision-making. In this work,
a methodology of data-influence analytics based on mixed-effects logistic regression models is
proposed for detecting potentially influential observations which can affect the quality of these
models. Global and local influence diagnostic techniques are used simultaneously in this detection,
which are often used separately. In addition, predictive performance measures are considered for this
analytics. A study with children and adolescent asthma real data, collected from a public hospital of
São Paulo, Brazil, is conducted to illustrate the proposed methodology. The results show that the
influence diagnostic methodology is helpful for obtaining an accurate predictive model that provides
scientific evidence when data-driven medical decision-making.

Keywords: binary data; fixed airway obstruction; global and local influence diagnostics;
Metropolis–Hastings and Monte Carlo methods; mixed-effects logistic regression; R software

1. Introduction and Context of the Empirical Application

Asthma is recognized as one of the most important chronic diseases that affects millions of people
worldwide. This disease produces a decrease in the quality of life, disability and premature death of
people in all ages [1]. In addition, it continues to be an important source of global economic burden in
terms of costs and social impact [2,3]. Asthma is described as a heterogeneous disease by the Global
Initiative for Asthma (GINA: https://ginasthma.org) and usually characterized as a chronic airway
inflammation. It is defined by the history of respiratory symptoms such as chest tightness, cough,
shortness of breath, and wheeze that varies over time and in intensity together with variable expiratory
airflow limitation. Although it is not strictly a definition, this description captures the essential features
for clinical purposes. The National Asthma Education and Prevention Program (https://www.nhlbi.
nih.gov/science/national-asthma-education-and-prevention-program-naepp) has classified asthma
as: intermittent, mild persistent, moderate persistent, and severe persistent. These classifications
are based on severity, which is determined by symptoms and lung function tests. According to [4],
in recent decades, the asthma prevalence is increasing in many countries, especially among children and
adolescents. Therefore, strategies based on scientific evidence are crucial to generate better preventive
measures as well as greater access and adherence to treatments that reduce the economic burden.
Thus, organizations, such as the Global Asthma Network (http://www.globalasthmanetwork.org/
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index.php), the International Study of Asthma and Allergies in Children (http://isaac.auckland.ac.nz),
and the mentioned GINA, have been created worldwide to generate scientific evidence and disseminate
information on the best care of asthma in terms of its prevention and management.

The scientific evidence about asthma is strongly related to data analysis, which is already part
of medical decision-making or medical decision science, a process increasingly associated with data
science and big data [5–11]. Then, data analysis tools as predictive models provide precious information
to the areas of clinical practice, medical research and public health [12–15]. One of the most popular
predictive models for fitting the presence or absence of a disease by means of categorical data, especially
by considering data with a binary response, is the logistic regression [16]. Modeling and prediction
for correlated and uncorrelated binary data through the logistic regression model have been carried
out in different areas of science and especially in medicine. The logistic regression model is one of the
most useful statistical tools due to its good properties and easy interpretation; read more information
in [16–18]. This model presents statistical challenges that have a strong implication on the results and
can compromise the inference, predictions and, consequently, the conclusions, as well as data-driven
medical decisions making. In this regard, once the model has been fitted to the binary response
data, it is essential to check that its fit is valid. There are several manners to make this validation in
models for binary data [19]. Recent advances in model checking and diagnostics have been developed
by several authors [20–30]. For more details and references regarding to statistical diagnostics, see
Section 3.

In a recent study [4], children and adolescents, who were diagnosed with persistent or intermittent
asthma, have been in medical follow-up for at least one year in a public hospital at São Paulo, Brazil.
The patients in the study were 362 children and adolescents aged from 6 to 20 years of old, of both sexes
(59% male patients and 41% female patients) from numerous ethnicities. Clinical examinations detected
whether or not the patients had a fixed airway obstruction (FAO hereafter). These results were reported
based on gender, age, height, region and pulmonary function test data when there is no significant
response to a bronchodilator. Patients were classified into four groups according to their current
asthma severity: [Group 1] Intermittent asthma; [Group 2] Mild persistent asthma; [Group 3] Moderate
persistent asthma; and [Group 4] Severe persistent asthma. The explanatory variables considered are
duration of treatment in years (treatment hereafter), blood test presence or absence of eosinophilia
(increased number of circulating eosinophils in the blood, eosinophilia hereafter) and sum of all
levels of all factors that produce allergy (allergy hereafter) following the radio allergosorbent test
(RAST). The interval (mean ± SD) of the variables treatment and RAST are (5.946 ± 3.255) and
(7.064 ± 4.051), respectively, with SD denoting their standard deviation. The observations, grouped
by severity level and analyzed by using a mixed model [17], allow us to include the correlation and
variability due to factors that were not observed in the study. Because the interest is to analyze or
predict the asthma state through the binary response variable FAO, a mixed-effect logistic regression
model can be proposed [31] to describe this response.

The primary objective of this work is to provide data-influence analytics using a mixed-effect
logistic regression model applied to the asthma disease. This analytics is based on global and local
influence diagnostic techniques, which are used simultaneously in this study but often used separately.
Therefore, the main contribution of this research is to consider global and local influence diagnostic
techniques simultaneously in a mixed-effect logistic regression model applied to asthma world-real
data. Such a joint usage allows us to identify situations which could not be detected if we use
these techniques separately. In addition, predictive performance measures are considered for such a
data-influence analytics. The secondary objectives of this work related to the application are: (i) to
provide an algorithm that summarizes the methodology proposed in this study as a mechanism for
improved scientific evidence in asthma data; (ii) to determine what explanatory variables are associated
with FAO and to model the probability that the patient presents FAO given the asthma severity group
in which it was classified; (iii) to identify values that, after their elimination, cause disproportionate
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changes in the estimates of the model parameters and allow us to improve its predictive performance;
and (iv) to detect patients who are too different medically in relation to FAO.

This article is organized as follows. Section 2 describes the mixed-effects logistic regression
model for the asthma status study. In Section 3, we present the methodology for data-influence
analytics of the described predictive model. Sections 4 and 5 introduce the global and local influence
techniques. The Monte Carlo and Metropolis–Hastings methods are presented in Section 6 to calculate
the respective influence measures. In Section 7, we provide the computational aspects and algorithms
used in this study. In Section 8, the quality of the fitted mixed-effects logistic regression model for
studying asthma status is analyzed. Finally, in Section 9, the conclusions and proposals for future
studies are discussed.

2. Mixed-Effects Logistic Regression Model for Asthma Status Study

To study the asthma status of children and adolescents at a public hospital of São Paulo, Brazil,
we consider a clustered data set by current severity of asthma of q = 362 patients, with q being
used in Section 5. In the context of mixed models, the clustered data set has four asthma severity
groups, defined in the introduction, labeled by i, with the ith group being conformed by ni patients,
for i = 1, . . . , k, where k = 4 in this study. The asthma status is represented by the binary response
variable Yij, with Yij = 1 if the patient j in the ith group is classified with FAO; otherwise, Yij = 0
for j = 1, . . . , ni, with i = 1, . . . , k. The probability πij = P(Yij = 1) is modeled as a function of
the explanatory variables, which include the duration of the treatment (in years), X1 (treatment);
an indicator variable of eosinophilia, X2 (eosinophilia); and sum of all levels of all factors that
produce allergy according to the RAST, X3 (allergy). The change between asthma severity groups
is accommodated through random intercept ui. Then, our mixed-effect logistic regression model is
described by Yij|ui ∼ Bernoulli(πij), with ui ∼ N(0, σ2) and

logit
(
πij
)
= logit

(
P(Yij = 1|ui)

)
= β0 + β1x1ij + β2x2ij + β3x3ij + ui, j = 1, . . . , ni, i = 1, . . . , k,

where x1ij, x2ij, x3ij represent the values of X1, X2, X3, respectively, and

logit(πij) = log

(
πij

1− πij

)
= log(πij)− log(1− πij).

Let θ = (β0, β1, β2, β3, σ2)> be the vector of unknown parameters of the proposed mixed-effect
logistic regression model. The maximum likelihood (ML) estimate of θ, standard error (SE), p-values,
and sensitivity (Sens), specificity (Spec) and accuracy (Acc) performance measures are presented
in Table 1. Computational aspects related to parameter estimation and calculation of prediction
performance measures are described in Section 7. The procedure of formulation of the mixed-effect
logistic regression model until obtaining the final prediction model is summarized in Algorithm 1.

Table 1. Estimates (with SE in parentheses), p-values, and Sens, Spec and Acc measures for asthma data.

Effect Parameter Estimate (SE) p-Value

Intercept β0 −4.0430 (0.7343) <0.0001
Treatment β1 0.1871 (0.0579) 0.0012
Eosinophilia β2 0.1101 (0.0481) 0.0220
Allergy β3 −0.7006 (0.4026) 0.0817
Asthma severity group σ 0.5417 -

Measure Sens = 0.6969 Spec = 0.7598 Acc = 0.7541
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Algorithm 1 Formulation/estimation/fit/validation of the mixed-effect logistic regression

1: Collect a sample of data y according to a mixed-effect logistic regression model.

2: Conduct an exploratory data analysis to show evidence of mixed effects in the logistic regression
model.

3: Estimate the parameters of the mixed-effect logistic regression model with the ML method.

4: Use the asymptotic properties of the ML estimators to obtain the SE and p-values associated with
each parameter estimated in step 3.

5: Calculate Sens, Spec and Acc performance measures to validate the model.

The results related to the fixed effects of the model indicate that the explanatory variables
treatment and eosinophilia are significant at 5% according to the p-values of Table 1, which are
0.12% and 2.20%, respectively. Then, the overall level of both covariates to reach significance is 5%.
This level is one of the most commonly used in the literature and it is chosen as a benchmark to
make other inferences and obtain the necessary conclusions. However, this does not prevent any
reader can draw her/his own conclusions by means of the p-values reported in the tables of the
present manuscript. Note that this significance level of 5% is also adopted as a benchmark for the
post-deletion of cases after applying the data-influence analytics detailed in the following sections.
The estimates with positive sign of the treatment and eosinophilia coefficients indicate that, for a
given group, as the treatment time of a patient increases, the probability of presenting FAO increases
as well. In addition, a patient with eosinophilia is more likely to present FAO. Note that the SD
associated with the random intercept distribution is greater than zero. Hence, heterogeneity is detected
among the four asthma severity groups. Regarding to the performance of the model predictive, Table 1
reports that the probability of correct classification of having FAO is 69.69%, the probability of correct
classification of not having FAO is 75.98%, and probability of correct classification is 75.41%.

3. Data-Influence Analytics in Mixed-Effects Logistic Regression Model

Data-influence analytics is used to identify potentially influential cases that can affect the
parameter estimates and the quality of the model prediction. This can allow us to detect implicit
problems in the data set and cases that, after being removed, might modify the inferences/predictions
and conclusions drawn from the analysis and possibly altering the decisions made from the
study results.

In the statistical literature there are two main techniques for detecting influential cases. The first
one corresponds to global influence diagnostics, performed commonly by case-deletion, which consists
of the elimination of cases of the total data set; see details in, for example, Refs. [32–36]. The second
one corresponds to local influence diagnostics that allows us to identify cases that, under small
perturbations in the model or in the data, may cause disproportionate changes in the estimates of the
model parameters; see details in, for example, Refs. [22,24–28,30,37–39].

The difference between both techniques is that local influence diagnostics does not require the
elimination of cases and allows us simultaneously evaluating the joint influence of all potentially
influential cases. Nevertheless, both techniques can be connected to generate a more complete
diagnostics, that is the proposal of this work. On the one hand, global influence by case-deletion [36] is
a technique which develops a diagnostic measure by evaluating the difference between the estimates
of model parameters before and after deleting potentially influential cases from the data set. On the
other hand, the local influence technique [37,39] derives diagnostic measures by using the curvature of
the influence graph for an appropriate function.
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For the mixed-effects logistic regression model, we combine the global influence diagnostics
proposed in [40] for the model with incomplete data and the local influence diagnostics presented
in [24] for binary response variables, both supported in the Monte Carlo integration and sampling
observations from the Metropolis–Hastings algorithm.

Let the random effects of the mixed-effects logistic regression model be represented as a missing
(unobserved) data set, yu = {ui: i = 1, . . . , k}, and augmented with the observed data set yo =

{yij: j = 1, . . . , ni; i = 1, . . . , k}. Then, the complete data set can be represented as yc = (yo, yu).
Thus, the complete-data log-likelihood function for the model parameter θ is given by `(θ; yc) =

∑k
i=1 ∑ni

j=1 log
(

pYij |ui
(yij)pui (ui)

)
, where

pYij |ui
(yij) = exp

(
yij log

(
πij

1− πij

)
− log

(
1

1− πij

))
, yij ∈ {0, 1}, 0 < πij < 1,

and pui (ui) is the density function of the normal distribution of mean zero and variance σ2 for
j = 1, . . . , ni and i = 1, . . . , k. Subsequently, inspired by the expectation-maximization (EM)
algorithm [40–42], we develop global and local influence measures based on the conditional expectation
of the complete-data log-likelihood function, Q(θ̂) = Q(θ)|θ=θ̂ = E[`(θ; Yc)|Yo = yo]|θ=θ̂, where the
expectation is calculated with respect to the conditional density function pYu|Yo=yo .

4. The Global Influence Diagnostics

The global influence technique allows us to study the effect of deleting cases or case-groups on the
estimate of θ. Thus, for the mixed-effects logistic regression model, there are two kinds of interesting
deletions. One of them is the deletion of each case, in order to evaluate the influence of the deleted
case on the ML estimate of θ. And the other one is the case-group deletion, in order to evaluate the
influence of the deleted case-group on the ML estimate of θ. In this context, consider the following
notations. A quantity with a subscript “[·]” means the relevant quantity with the ijth case or ith group
deleted. Hence, we define yo[·], yu[·] and yc[·] as the observed, unobserved and complete data sets,
respectively, with the ijth case or ith group deleted. Additionally, we define θ̂[·] as the ML estimate
of θ obtained with the ijth case or ith group deleted. Then, according to [40], in order to assess the
influence of ijth case or ith group on the ML estimate θ̂, the difference between θ̂[·] and θ̂ is calculated
through the global influence measure given by

D[·] =
(
θ̂[·] − θ̂

)>(− Q̈(θ̂)
)(

θ̂[·] − θ̂
)
, (1)

where

−Q̈(θ̂) =
∂2Q(θ)

∂θ∂θ

∣∣∣
θ=θ̂

.

However, the measure given in (1) implies calculating θ̂[·] for every case. Hence, The procedure can be
computationally intensive depending upon the size of the data set. Therefore, in [40] is proposed a
one-step approximation θ̂1

[·] of θ̂[·] given by

θ̂1
[·] ≈ θ̂+

(
− Q̈(θ̂)

)−1Q̇(θ̂)[·], (2)

where

Q̇(θ̂)[·] =
∂Q(θ)[·]

∂θ

∣∣∣
θ=θ̂

.

Note that θ̂1
[·] depends on only the ML estimate θ̂ to save the computation time. Consequently,

substituting (2) into (1), the global influence measure is given by

D1
[·] ≈ Q̇(θ̂)>[·]

(
− Q̈(θ̂)

)−1Q̇(θ̂)[·], (3)
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where the derivatives included in −Q̇(θ̂)[·] are

∂`(θ; yc)

∂β
=

k

∑
i=1

ni

∑
j=1

(yij − πij)xij,

∂`(θ; yc)

∂σ
= − k

2
(σ2)−1 +

1
2
(σ2)−2

k

∑
i=1

u2
i .

To study the influence of ijth case or ith group, we propose to work with the benchmark D + 2SE(D),
where D and SE(D) correspond to the mean and SE of all values of D1

[·].

5. The Local Influence Diagnostics

The local influence technique allows us to study the effect of minor modifications or perturbations
in the model or the data on the estimate of θ due to some source of uncertainty of model. One of the
sources of uncertainty which is crucial in mixed-effects logistic regression models corresponds to the
binary response variable. Note that, in this case, the response may assume only values zero or one,
so that the local influence technique cannot be applied with direct perturbation of the response, but its
probability of success can perturbed as described below.

Let ω = (ω1, . . . , ωq)> be a q× 1 perturbation vector in Ω ⊂ Rq andM ≡ {pYc(yc; θ, ω): ω ∈
Ω ⊂ Rq} be the perturbed mixed-effects logistic regression model, where pYc(yc; θ, ω) is the density
function of Yc perturbed by ω and `(θ, ω; yc) is its corresponding complete-data log-likelihood
function. Assume that there is a ω0 non-perturbation vector such that pYc(yc; θ, ω0) = pYc(yc; θ) and
`(θ, ω0; yc) = `(θ; yc) for all θ. To assess the local influence of ω on the ML estimate θ̂, one can consider
the Q-displacement function [38] given by fQ(ω) = 2(Q(θ̂) − Q(θ̂(ω))), where θ̂(ω) is the ML
estimate of θ that maximizes Q(θ, ω)|θ=θ̂ = E[`(θ, ω; Yc)|Yo = yo]|θ=θ̂ and the expectation is calculated
with respect to the conditional density function pYu|Yo=yo . Therefore, Q(θ̂) = Q(θ, ω)|θ=θ̂,ω=ω0

.
Following the arguments given in [37] to characterize the behavior of fQ(ω) at ω0, in [41] is shown
that the normal curvature C fQ ,h of α(ω) at ω0, in the direction of a unit vector h ∈ Rq, is given by

C fQ ,h = −2h>Q̈ω0 h = 2h>∆>ω0
(−Q̈θ(θ̂))

−1∆ω0 h, (4)

where Q̈ω0 = ∂2Q(θ̂(ω))/∂ω∂ω> is a q× q matrix evaluated at ω = ω0, −Q̈θ(θ̂) = −∂2Q(θ)/∂θ∂θ>

is a p× p symmetric and semipositive definite matrix evaluated at θ = θ̂, and ∆ω0 = ∂2Q(θ, ω)/∂θ∂ω>

is the p× q perturbation matrix evaluated at θ = θ̂ and ω = ω0. Nevertheless, the measure given in
(4) is invariant under reparametrization of θ. In [41] also is proposed the conformal normal curvature
B fQ ,h at ω0, in the direction of a unit vector h ∈ Rq, as

B fQ ,h =
−2h>Q̈ω0 h

trace(−2Q̈ω0)
.

Let λ1 ≥ · · · ≥ λr > 0 be the r non-zero eigenvalues of Q = −2Q̈ω0 /trace(−2Q̈ω0) and e1, . . . , er

be their corresponding orthogonal eigenvectors. Based on Q, the aggregate contribution vector defined
as M(0) = ∑M

m=1 λue2
m is used to assess the local influence of ω, where e2

m = (e2
m1, . . . , e2

mq)
> [41,43].

To study the influence of ω, we work with the following benchmark. The ijth case or ith group
are potentially influential if M(0) > M + 2SE(M), where M and SE(M) are the mean and SE of
M(0) values.

Arbitrarily perturbing the model or data may lead to unreliable results regarding to the influence
diagnostics. In [44] is proposed a form for selecting an appropriate perturbation vector ω, for the
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modelM, based on the expected Fisher information matrix with respect to ω. This matrix is given by
G(ω) = (gl l′(ω)), with

gl l′(ω) = E

(
−

∂2 log(pyc(Yc; θ, ω))

∂ω2
l l′

)
, l, l′ = 1, . . . , q,

where the expectation is calculated with respect to pYc(yc; θ, ω); see more information about the
properties of this matrix in [44]. Then, a perturbation vector ω is appropriate if G(ω) evaluated
at ω0 equals aIq, that is, G(ω0) = aIq, with a > 0, and Iq being the q × q identity matrix. Now,
if G(ω0) 6= aIq, we can always reparametrize the perturbed modelM by considering the one-to-one
transformation ω(ω∗) = ω0 + G(ω0)

−1/2(ω∗ −ω0), such that G(ω∗) evaluated at ω0 is equal to aIq.
In this context, because perturbing the probability of success given by ωl l′πl l′ , with ωl l′ ∈ (0, 1],

is not appropriate, the perturbation (ω0l l′
+ gl l′(ω0)

−1/2(ω∗l l′ −ωl l′0
))πl l′ can be considered, where

the elements gl l′(ω0) are stated as

−∂2 log(pYc(yc; θ, ω))

∂ω2
l l′

∣∣∣∣
ω=ω0

=
yl l′(1− 2πl l′) + π2

l l′

(1− πl l′)2 , l, l′ = 1, . . . , q,

and the non-perturbation vector is ω∗0 = 1. Thus, the derivative different from zero involved in ∆ω0 is

∂2`(θ, ω∗; yc)

∂β∂ω∗l l′

∣∣∣∣
ω∗=ω∗0

= gl l′(ω0)
−1/2(yl l′ − 1)

πl l′

(1− πl l′)
xl l′ , l, l′ = 1, . . . , q. (5)

Note that, when yl l′ = 1, the derivative given in (5) is equal to zero. In practice, initially we carry
out the local influence diagnostics for cases with yl l′ = 0, and then we alternate the values of yl l′ to
perform the diagnostics with yl l′ = 1.

6. Monte Carlo Integration and Metropolis–Hastings Algorithm

The conditional expectations involved in Q̇(θ̂)[·] of the global influence measure and −Q̈(θ̂), ∆ω0

of the local influence measure cannot be evaluated in closed form. In [41], this problem is solved via
the Monte Carlo integration and Metropolis–Hastings algorithm stated as follows.

Let {Y (s1)
u : s1 = 1, . . . , S1} be a random sample generated from the conditional density given by

pYu|Yo=yo(yu) ∝ exp

(
− 1

2σ2 u2
i +

ni

∑
j=1

yij log

(
πij

1− πij

)
− log

(
1

1− πij

))
, (6)

via the Metropolis–Hastings algorithm. Then, the quantities of interest are approximated as

Q̇(θ̂)[·] ≈
1

S1 − S0

S1

∑
s1=S0+1

∂`(θ; yo[·], y(s1)
u[·] )

∂θ

∣∣∣∣
θ=θ̂

, (7)

−Q̈(θ̂) ≈ 1
S1 − S0

S1

∑
s1=S0+1

−∂2`(θ; yo, y(s1)
u )

∂θ∂θ>

∣∣∣∣
θ=θ̂

,

∆ω0 ≈ 1
S1 − S0

S1

∑
s1=S0+1

∂2`(θ, ω; yo, y(s1)
u )

∂θ∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

, (8)

where S0 are the first 1000 observations for burn-in. The procedure is implemented in Algorithm 2.
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Algorithm 2 Metropolis-Hastings method to sample observations.

1: Initialize from an arbitrary value u(r)
i , for i = 1, . . . , k, and set r = 0.

2: Let r = r + 1 and generate a new candidate as ui ∼ N(u(r−1)
i , Γi(0)), where

Γi(0) = Γ(ui)|ui=0 = (σ2)−1 +
ni

∑
j=1

πij(1− πij))
−1|ui=0, i = 1, . . . , k.

3: Obtain u from U ∼ U(0, 1) and if u ≤ α(u(r−1)
i , ui), u(r)

i = ui, otherwise, u(r)
i = u(r−1)

i , where

α(u(r−1)
i , ui) = min{p(ui|yo, θ)/p(u(r−1)

i |yo, θ), 1} is the probability of accepting a new candidate.

4: Repeat steps 1-3 until r ≥ S2 + 1, where S2 is a large positive integer.

The conditional expectation involved in gl l′(ω0) associated with ∆ω0 cannot be evaluated in closed

form. In [44], a random sample {u(s2)
i ; s2 = 1, . . . , S2} is generated from the N(0, σ2) distribution and

then gl l′(ω0) can be approximated as

g(i)l l′ (ω0) ≈
1
S2

S2

∑
s2=1

∂2 log(p(yo, u(s2)
i |θ, ω))

∂ω2
l l′

∣∣∣∣
θ=θ̂,ω=ω0

. (9)

7. Computational Framework

To carry out the procedure of data-influence analytics, we summarize the methodology that has
been introduced in Sections 2–6 by means of Algorithms 3–6. Specifically, Algorithm 6 corresponds
to the full procedure of data-influence analytics, which implements the other three algorithms
sequentially through what we denominate phases. In Phase I, Algorithm 3 is called for executing the
procedure of sampling observations from the Metropolis–Hastings algorithm. In Phases II and III,
Algorithms 4 and 5 are designed to execute global and local influence diagnostics, respectively. Note
that when we refer to global and local influence diagnostics, these include the post-deletion analysis
which consists of evaluating the impact on the estimates, SE, and p-values, relative change (RC), and
predictive performance measures (Sens, Spec and Acc using the selection criteria Sens = Spec) of the
groups or cases detected due to their potential influence. Based on results obtained in the Phases II and
III, Phase IV decides the cases that need a new post-deletion analysis. Thus, with the results obtained
in Phase IV, Phase V performs the final post-deletion analysis.

The proposed methodology is implemented in the R and RStudio software [45]. R is a
non-commercial open source software for statistical computing and graphics and RStudio is an
integrated development environment (IDE) for R. Both of them can be downloaded from www.r-
project.org and www.rstudio.com, respectively. For an application of R and RStudio in medical
sciences, see [46]. Some R packages related to fit of non-normal data with mixed effects are available
in CRAN.R-project.org [47]. Specifically, we use the base package for descriptive statistics and the
lme4 package for fitting the mixed-effects logistic regression model. We use the command glmer
of the lme4 package for the ML estimation of θ based on the AGHQ procedure with 25 quadrature
points. We employ the matrixcalc package for calculations associated with global and local influence
measures, whereas the PresenceAbsence package is considered for calculating the Sens, Spec and
Acc measures. R codes with the implementation of the proposed methodology are available from the
authors upon request.

www.r-project.org
www.r-project.org
www.rstudio.com
CRAN.R-project.org
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Algorithm 3 Procedure of sampling observations from the Metropolis–Hastings algorithm.

1: Collect clustered binary data yij and a p1 × 1 vector with the values of the covariates denoted by
xij for the fixed effects, with j = 1, . . . , ni and i = 1, . . . , k.

2: Formulate a mixed-effects logistic regression model and determine the ML estimates of its
parameters by using the AGHQ procedure with 25 quadrature points.

3: Generate a random sample {u(s2)
i ; s2 = 1, . . . , S2 = 2000} from the normal distribution with zero

mean and variance σ̂2 and calculate the elements of the matrix G(ω0) given in (9).

4: Generate data {y(s1)
u : s1 = 1, . . . , S1 = 10000} from the conditional density function given in (6) by

using the Metropolis-Hastings method defined in Algorithm 2.

Algorithm 4 Procedure for global influence diagnostics.

1: Based on the data {y(s1)
u : s1 = 1, . . . , S1} generated in Algorithm 3, approximate the vector Q̇(θ̂)[·]

given in (7) for ijth case and ith case-group, with j = 1, . . . , ni and i = 1, . . . , k.

2: Calculate the global influence measures D1
[·], given in (3), for ijth case and ith case-group, with j =

1, . . . , ni and i = 1, . . . , k.

3: Compute the benchmark D + 2SE(D) for the cases and case-groups identifying potentially
influential points.

4: Perform post-deletion analysis with the cases or case-groups detected as potentially influential.

Algorithm 5 Procedure for local influence diagnostics.

1: Based on the data {y(s1)
u : s1 = 1, . . . , S1} generated in Algorithm 3, approximate the Fisher

information matrices −Q̈(θ̂) and ∆ω0 given in (8).

2: Calculate the local influence measures M(0), with j = 1, . . . , ni and i = 1, . . . , k.

3: Compute the benchmark M + 2SE(M) and identify potentially influential points.

4: Alternate values of grouped binary data yij, with j = 1, . . . , ni and i = 1, . . . , k; carry out steps 2 to
4 of Algorithm 3; and then continue with steps 1 to 3.

5: Perform post-deletion analysis with the cases detected as potentially influential.

Algorithm 6 Procedure for data-influence analytics.

1: Produce the formulation, estimation, fit and validation of the model with Algorithm 1.

2: Consider the Metropolis-Hastings method to obtain observations as in Algorithm 2.

3: Execute Phase I (sampling observations using Metropolis–Hastings) with Algorithm 3.

4: Perform Phase II (global influence diagnostics) with Algorithm 4.

5: Carry out Phase III (local influence diagnostics) with Algorithm 5.

6: Establish Phase IV (Phase II and Phase III for post-deletion analysis).

7: Conduct Phase V based on the results of Phase IV to perform the final post-deletion analysis.
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8. Model Quality

To evaluate the quality of the mixed-effects logistic regression model used in the study with
asthma data, we carry out Phases II and III for data-influence analytics described in Algorithm 6.
The results are the following. Figure 1 shows the index plots of global influence measures for (a)
the cases with benchmark equal to 0.0141 and (b) the case-groups with benchmark equal to 0.5250.
All potentially influential cases from the four groups identified from Figure 1a have been displayed in
Table 2. In addition, Figure 1b indicates the Group 4 (severe persistent asthma) as potentially influential.

Table 2. The indicated globally influential cases from all four groups from Figure 1 with asthma data.

Group Case(s)

1 #18 #30 #38 #52
2 #78 #97 #99 #130 #159
3 #204 #212 #221 #227 #238
4 #292 #295 #300 #301 #310 #311 #313 #315 #317 #327 #330

#335 #339 #341 #343 #345 #348 #352 #358 #360 #362

(a) (b)

Figure 1. Index plots of global influence for asthma data: (a) cases and (b) groups.

Figure 2a,b show index plots of local influence measures for (a) yij = 0 with benchmark equal
to 0.0031 and (b) yij = 1 with benchmark equal to 0.0040. All local influence cases from four groups
identified from Figure 2 are reported in Table 3.

Table 3. The indicated locally influential cases from all four groups from Figure 2 with asthma data.

Group Case(s)

1 yij = 1 #18 #30 #52
2 yij = 0 #115 #120 #139
2 yij = 1 #78 #97 #99 #130 #159
3 yij = 0 #173 #179 #183 #185 #199 #211 #217 #220

#228 #232 #234 #241 #242 #249 #256 #257
#258 #265 #274 #283 #284 #285

3 yij = 1 #204 #212 #221 #227 #238 #250 #262 #264 #281
4 yij = 0 #290 #291 #293 #294 #296 #297 #298 #299

#300 #302 #303 #304 #305 #306 #307 #308
#309 #312 #314 #316 #318 #319 #320 #321
#322 #323 #324 #325 #326 #328 #329 #331
#332 #333 #334 #336 #337 #338 #340 #342
#343 #344 #345 #346 #347 #348 #349 #350
#351 #353 #354 #355 #356 #357 #359 #361 #362

4 yij = 1 #292 #295 #301 #310 #311 #313 #315 #330
#335 #339 #341 #352 #358 #360
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Figure 2. Index plots of local influence for asthma data: (a) yij = 0 and (b) yij = 1.

Tables 4 and 5 display the results of estimates, SE, p-values, RC and predictive performance
measures from post-deletion analysis of the cases and case-groups detected as influential under
global influence diagnostics (Phase II). Regarding to the parameter estimates of the fixed effects (β̂),
note that after removing the cases detected as potentially influential for each group, the estimates
present moderate changes, but the estimate related to the intercept random (σ̂) presents a high change,
in accordance with the RC values. In addition, inferential changes observed for the eosinophilia
covariate pass from significant to not significant at 5%, when cases from Groups 3 and 4 are removed.
With respect to the Sens, Spec and Acc measures, with Sens = Spec determining an optimal threshold
equal to 0.1, once the potential influential cases of Groups 1, 2 and 3 are removed, the values of Sens,
Spec and Acc increase considerably. Observe that the maximum values of Sens, Spec and Acc are
obtained by removing the cases detected as potentially influential of Group 3, that is, 0.8333, 0.8328
and 0.8328, respectively. Under global influence analysis for the case-groups, the estimates related to
fixed effects (β) present moderate changes and inferential changes at 5% in the covariate eosinophilia
for the Group 4. Estimate of the variance parameter associated with the distribution of the random
intercept (σ) is almost zero, that is, the model does not capture the change or heterogeneity between
asthma severity groups, suggesting a standard logistic regression model. In addition, after the Group 4
is removed, the values of Sens, Spec and Acc decrease.

The results of post-deletion analysis of the cases detected as influential by group under local
influence diagnostics (Phase III) are presented in Tables 6 and 7. We note that, after removing the cases
detected as potentially influentials for each group, the estimates related to fixed effects (β) present
moderate changes in all groups and inferential changes at 5% in the covariate eosinophilia for the
Groups 4 and 3. Estimate of the variance parameter associated with the distribution of the random
intercept (σ) is almost zero, that is, the model not capture the change or heterogeneity between asthma
severity groups, suggesting a standard logistic regression model. In relation to the Sens, Spec and
Acc measures, with the selection criteria Sens = Spec determining an optimal threshold equal to 0.1,
the values of Sens, Spec and Acc are equal to 0.6969, 0.7598, 0.7541, respectively, for all data. Now,
after removing the cases detected as potentially influential of the Groups 1, 2 and 3, the values increase
considerably. The maximum values are obtained by removing the cases detected as influential in the
Group 3, that is, these values are 0.8333, 0.8371 and 0.8368, respectively. However, for the Group 4,
these values decrease mainly for Spec and Acc.

According to results obtained in Phase II and III, we observe that the Groups 3 and 4 need
more study (Phase IV). For that reason, we now perform post-deletion analysis considering each
type of response. Tables 8 and 9 displays the results of estimates, SE, p-values, RC and predictive
performance measures, with yij = 0 and yij = 1 of the Groups 3 and 4. For the global influence
diagnostics, the cases with responses yij = 0 for the Group 4 lead to a significant allergy covariate at
5%. For the cases with responses yij = 1, in both groups we conclude that the eosinophilia covariate is
not significant at 5%. By observing the performance measures, after removing the cases with yij = 0 of
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the Group 4, the values of these measures increase partially, whereas after removing the cases with
yij = 1 of the Group 3, the values of these measures increase substantially. For the local influence
diagnostics, we observe that the cases with responses yij = 0 and yij = 1 of the Group 4, and cases
with responses yij = 1 of the Group 3 are related to the eosinophilia covariate which is not significant
at 5%. In addition, the cases with responses yij = 1 of the Group 4 are related to the estimate of the
variance (σ), which is almost zero and this is associated with the normal distribution of the random
intercept. By observing the performance measures, after removing the cases with yij = 0 of the Group
4 and yij = 1 of the Group 3, the values of these measures increase. Thus, we decide to remove the
cases with yij = 0 of the Group 4 and cases with yij = 1 of the Group 3 (Phase V). This makes sense
because they are patients with severe persistent asthma (Group 4) but without FAO, or they have
moderate persistent asthma (Group 3) and present FAO.

Tables 10 and 11 report the results of the post-deletion analysis. Observe that the eosinophilia
covariate is not significant at 5%, and allergy is not significant at 10%. Nevertheless, the Sens, Spec
and Acc measures present a large increase, that is, 0.8750, 0.8860 and 0.8851, respectively. Table 12
reports the fit for the model reduced (without these covariates), and Table 13 reports the performance
measures of the prediction. Note that the variance increases and that the prediction measures decrease.
Hence, these covariates must remain in the model. Therefore, the method of combining the global
and local influence diagnostics at the group and cases levels allow us to obtain a model with higher
prediction capacity and some inferential changes.

Table 4. Estimates (SE), p-values and RC under global influence diagnostics for the asthma data.

Removed Cases/Case-Groups Effect Parameter Estimate (SE) p-Value RC

None Intercept β0 −4.0430 (0.7343) <0.0001 -
Treatment β1 0.1871 (0.0579) 0.0012 -
Eosinophilia β2 0.1101 (0.0481) 0.0220 -
Allergy β3 −0.7006 (0.4026) 0.0817 -
Group asthma severity σ 0.5417 - -

Cases

Group 4 Intercept β0 −4.7891 (0.9228) <0.0001 18.4548
Treatment β1 0.2190 (0.0787) 0.0054 17.0093
Eosinophilia β2 0.1012 (0.0615) 0.1000 8.0440
Allergy β3 −0.5844 (0.5408) 0.2798 16.5857
Group asthma severity σ 0.1055 - 80.5179

Group 3 Intercept β0 −4.7585 (1.1449) <0.0001 17.6993
Treatment β1 0.2017 (0.0704) 0.0041 7.8030
Eosinophilia β2 0.0946 (0.0594) 0.1114 14.0289
Allergy β3 −0.7692 (0.4823) 0.1107 9.7869
Group asthma severity σ 1.3676 - 152.4889

Group 2 Intercept β0 −4.4838 (1.0104) <0.0001 10.9038
Treatment β1 0.1612 (0.0629) 0.0104 13.8549
Eosinophilia β2 0.1066 (0.0539) 0.0480 3.1408
Allergy β3 −0.5427 (0.4493) 0.2271 22.5364
Group asthma severity σ 1.2190 - 125.0695

Group 1 Intercept β0 −4.2253 (0.9174) <0.0001 4.5107
Treatment β1 0.1814 (0.0626) 0.0037 3.0550
Eosinophilia β2 0.1116 (0.0521) 0.0323 1.4334
Allergy β3 −0.9529 (0.4247) 0.0248 35.9984
Group asthma severity σ 1.0386 - 91.7622

Case-groups

Group 4 Intercept β0 −4.6387 (0.8633) <0.0001 14.7364
Treatment β1 0.2097 (0.0772) 0.0066 12.0460
Eosinophilia β2 0.1075 (0.0598) 0.0723 2.2988
Allergy β3 −0.4947 (0.5453) 0.3642 29.3869
Group asthma severity σ 0.0000 - -
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Table 5. Sens, Spec and Acc measures under global influence diagnostics for the asthma data.

Removed Cases Sens Spec Acc

None 0.6969 0.7598 0.7541

Cases

Group 4 0.6470 0.5740 0.5777
Group 3 0.8333 0.8328 0.8328
Group 2 0.7500 0.7598 0.7591
Group 1 0.7666 0.7713 0.7709

Case-groups

Group 4 0.6470 0.6029 0.6055

Table 6. Estimates (SE), p-values and RC under local influence diagnostics for the asthma data.

Removed Cases Effect Parameter Estimate (SE) p-Value RC

None Intercept β0 −4.0430 (0.7343) <0.0001 -
Treatment β1 0.1871 (0.0579) 0.0012 -

Eosinophilia β2 0.1101 (0.0481) 0.0220 -
Allergy β3 −0.7006 (0.4026) 0.0817 -

Group asthma severity σ 0.5417 - -
Group 4 Intercept β0 −4.6895 (0.8425) <0.0001 15.9908

Treatment β1 0.2131 (0.0740) 0.0039 13.8918
Eosinophilia β2 0.1111 (0.0574) 0.0532 0.9085

Allergy β3 −0.3300 (0.5315) 0.5345 52.8898
Group asthma severity σ 0.0000 - -

Group 3 Intercept β0 −4.6938 (1.1351) <0.0001 16.0978
Treatment β1 0.2001 (0.0706) 0.0045 6.9104

Eosinophilia β2 0.0936 (0.0596) 0.1166 14.9767
Allergy β3 −0.7722 (0.4819) 0.1090 10.2169

Group asthma severity σ 1.3107 - 141.9941
Group 2 Intercept β0 −4.4710 (0.9954) <0.0001 10.5871

Treatment β1 0.1605 (0.0629) 0.0107 14.2306
Eosinophilia β2 0.1092 (0.0546) 0.0458 0.8277

Allergy β3 −0.5466 (0.4495) 0.0239 21.9839
Group asthma severity σ 1.1812 - 118.0761

Group 1 Intercept β0 −4.2345 (0.9413) <0.0001 4.7372
Treatment β1 0.1794 (0.0625) 0.0041 4.1182

Eosinophilia β2 0.1090 (0.0519) 0.0356 0.9258
Allergy β3 −0.941 (0.4246) 0.0266 34.3375

Group asthma severity σ 1.0965 - 102.4380

Table 7. Sens, Spec and Acc measures under local influence diagnostics for the asthma data.

Removed Cases/Case-Groups Sens Spec Acc

None 0.6969 0.7598 0.7541
Group 4 0.6842 0.6433 0.6460
Group 3 0.8333 0.8371 0.8368
Group 2 0.7500 0.7576 0.7570
Group 1 0.7666 0.7659 0.7660
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Table 8. Estimates (SE), p-values and RC under the indicated influence for the asthma data.

Removes Cases Effect Parameter Estimate (SE) p-Value RC

None Intercept β0 −4.0430 (0.7343) <0.0001 -
Treatment β1 0.1871 (0.0579) 0.0012 -

Eosinophilia β2 0.1101 (0.0481) 0.0220 -
Allergy β3 −0.7006 (0.4026) 0.0817 -

Group asthma severity σ 0.5417 - -

Global influence diagnostics

Group 4 – yij = 0 Intercept β0 −4.2754 (0.7884) <0.0001 5.7498
Treatment β1 0.2271 (0.0627) 0.0002 21.3234

Eosinophilia β2 0.1177 (0.0494) 0.0172 6.9236
Allergy β3 −0.8470 (0.4135) 0.0405 20.8850

Group asthma severity σ 0.6824 - 25.9923
Group 4 – yij = 1 Intercept β0 −4.8351 (0.9692) <0.0001 19.5934

Treatment β1 0.2044 (0.0774) 0.0083 9.2397
Eosinophilia β2 0.0954 (0.0612) 0.1189 13.2966

Allergy β3 −0.5104 (0.5396) 0.3442 27.1547
Group 3 – yij = 1 Intercept β0 −4.7585 (1.1449) <0.0001 17.6993

Treatment β1 0.2017 (0.0704) 0.0041 7.8030
Eosinophilia β2 0.0946 (0.0594) 0.1114 14.0289

Allergy β3 −0.7692 (0.4823) 0.1107 9.7869
Group asthma severity σ 1.3676 - 152.4889

Local influence diagnostics

Group 4 – yij = 0 Intercept β0 −3.114 (1.8348) 0.0896 22.9617
Treatment β1 0.2228 (0.0784) 0.0044 19.0419

Eosinophilia β2 0.1034 (0.0596) 0.0824 6.0194
Allergy β3 −0.5354 (0.5362) 0.3180 23.5843

Group asthma severity σ 3.0947 - 471.3594
Group 4 – yij = 1 Intercept β0 −4.6965 (0.8496) <0.0001 16.1644

Treatment β1 0.1978 (0.0710) 0.0053 5.6892
Eosinophilia β2 0.0976 (0.0582) 0.0935 11.3076

Allergy β3 −0.3334 (0.5223) 0.5232 52.4144
Group asthma severity σ 0.0000 - 100

Group 3 – yij = 0 Intercept β0 −3.8635 (0.7518) <0.0001 4.4387
Treatment β1 0.1767 (0.0593) 0.0028 5.5859

Eosinophilia β2 0.1037 (0.0494) 0.0358 5.7761
Allergy β3 −0.7219 (0.4030) 0.0732 3.0360

Group asthma severity σ 0.5386 - 0.5519
Group 3 – yij = 1 Intercept β0 −4.6938 (1.1351) <0.0001 16.0978

Treatment β1 0.2001 (0.0706) 0.0045 6.9104
Eosinophilia β2 0.0936 (0.0596) 0.1166 14.9767

Allergy β3 −0.7722 (0.4819) 0.1090 10.2169
Group asthma severity σ 1.3107 - 141.9941

Table 9. Sens, Spec and Acc measures with Sens = Spec under the indicated influence for asthma data.

Removed Cases Sens Spec Acc

None 0.6969 0.7598 0.7541

Global influence diagnostics

Group 4 – yij = 0 0.7575 0.7314 0.7338
Group 4 – yij = 1 0.5882 0.5744 0.5751
Group 3 – yij = 1 0.8333 0.8328 0.8328

Local influence diagnostics

Group 4 – yij = 0 0.7878 0.7904 0.7901
Group 4 – yij = 1 0.6842 0.6200 0.6235
Group 3 – yij = 0 0.7272 0.7133 0.7147
Group 3 – yij = 1 0.8333 0.8328 0.8328
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Table 10. Estimates (SE), p-values and RC under data-influence analytics for the asthma data.

Removed Cases Effect Parameter Estimate (SE) p-Value RC

None Intercept β0 −4.0430 (0.7343) <0.0001 -
Treatment β1 0.1871 (0.0579) 0.0012 -
Eosinophilia β2 0.1101 (0.0481) 0.0220 -
Allergy β3 −0.7006 (0.4026) 0.0817 -
Group asthma severity σ 0.5417 - -

Group 4 – yij = 0 Intercept β0 −4.7920 (3.2765) 0.1435 18.5261
Group 3 – yij = 1 Treatment β1 0.2987 (0.1181) 0.0114 59.6048

Eosinophilia β2 0.0916 (0.0863) 0.2883 16.7512
Allergy β3 −0.4026 (0.7687) 0.6004 42.5413
Group asthma severity σ 5.5658 - 927.5726

Table 11. Sens, Spec and Acc measures under data-influence analytics for the asthma data.

Removed Cases Sens Spec Acc

None 0.6969 0.7598 0.7541

Group 4 – yij = 0/Group 3 – yij = 1 0.8750 0.8860 0.8851

Table 12. Estimates (SE), p-values and RC under data-influence analytics for the asthma data.

Removed Cases Effect Parameter Estimate (SE) p-Value RC

None Intercept β0 −4.0430 (0.7343) <0.0001 -
Treatment β1 0.1871 (0.0579) 0.0012 -
Eosinophilia β2 0.1101 (0.0481) 0.0220 -
Allergy β3 −0.7006 (0.4026) 0.0817 -
Group asthma severity σ 0.5417 - -

Group 4 – yij = 0 Intercept β0 −4.7920 (3.2765) 0.1435 18.5261
Group 3 – yij = 1 Treatment β1 0.2987 (0.1181) 0.0114 59.6048

Eosinophilia β2 0.0916 (0.0863) 0.2883 16.7512
Allergy β3 −0.4026 (0.7687) 0.6004 42.5413
Group asthma severity σ 5.5658 - 927.5726

Group 4 – yij = 0 Intercept β0 −4.2963 (3.2379) 0.1845 6.2670
Group 3 – yij = 1 Treatment β1 0.2869 (0.1159) 0.0133 53.3056

Group asthma severity σ 5.7493 - 5121.0510

Table 13. Sens, Spec and Acc measures under data-influence analytics for the asthma data.

Removed Cases Sens Spec Acc

None 0.6969 0.7598 0.7541

Full model
Group 4 – yij = 0/Group 3 – yij = 1 0.8750 0.8860 0.8851

Reduced model
Group 4 – yij = 0/ Group 3 – yij = 1 0.8333 0.8382 0.8378

9. Conclusions, Discussion, and Future Research

When patients belong to a specific group, such as patients classified according to their severity of
asthma, the data present dependence and have a hierarchical structure that can be modeled through
the use of mixed models [17]. If the interest is to analyze or predict the binary response variables of
individuals based on certain variables fixed or random measured from those individuals, a mixed-effect
logistic regression model can be used [17,18]. This model is a typical predictive model widely used
in practice.
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This research reported the following findings:

(i) We have provided a data-influence analytics using a mixed-effect logistic regression applied to
the asthma disease based on global and local influence diagnostic techniques, which are used
simultaneously in this study but often used separately. Such a joint usage allowed us to identify
situations which could not be identified if we use these techniques separately. In the case of our
application, this data-influence analytics is provided in Tables 2–13 and Figures 1 and 2.

(ii) We have considered predictive performance measures for these analytics. In the case of our
application, results for these predictive performance measures are provided in Tables 1, 5, 7, 9,
11, and 13.

(iii) We have given an algorithm that summarizes the methodology proposed in this study; see
Algorithm 4.

(iv) We have proposed and implemented a methodology for the data-influence analytics of this type
of predictive models, which allows the provision of improved scientific evidence in asthma data,
to evaluate if the data contain particular observations that may impact on the conclusions to be
drawn from the analysis and, therefore, impact the medical decision-making.

(v) We have illustrated the proposed methodology with a case study of real-world data regarding to
the asthma data collected from a public hospital at São Paulo, Brazil.

The case study has shown that the new methodology allowed us to obtain a model with the
high predictive capacity, identify patients who are too different medically in relation to fixed airway
obstruction values, especially for severe persistent asthma and moderate persistent asthma groups.
In addition, we explained what characteristics or explanatory variables are associated with fixed
airway obstruction, in order to model the probability of fixed airway obstruction given the asthma
severity group in which it was classified. The results of this work can be taken as a contribution to
the data-influence analytics in predictive models applied to the asthma disease. Note that improving
the data quality with analytics has gained attention in recent years, especially in medicine. It allows
us to identify anomalies increasing the efficiency of medical experiments, while maintaining a high
level of data quality. Thus, it is possible to avoid inaccurate conclusions from results of the study.
Therefore, good statistical practices must be followed with sophisticated techniques, such as those
presented in this work related to detection of influential data and outliers, as well as other possible
inconsistencies in the data; see the studies presented in [48,49], which support our discussion in terms
of data quality and analytics in medicine. Thus, our study can be a knowledge addition to the toolkit
of diverse practitioners, including medical doctors, applied statisticians, and data scientists.

Some themes for future research, which arose from the present investigation, are the following:

(i) The procedure of data-influence analytics is very useful for identifying a set of the particular
observations termed influential. However, this set may include other type of particular
observations that are those so-called outliers. These outliers are those that are not well fitted by
the model and their detection is based commonly on the residual analysis. Therefore, developing
a methodology, which allows the identification of outliers detected in a data set using different
types of residuals for mixed-effects logistic regression models, is of interest for future study about
quality of fitted and prediction capability of the model [50].

(ii) An important aspect to be considered when medical data are analyzed is censorship. Model
parameter estimates with censored data is more efficient than when censorship is not considered.
Indeed, if censored cases are present and a censoring is not considered, it is not possible to
estimate the variance of the censored part. Nevertheless, if the censored case is used, such a
variance may be estimated from the data. In addition, asymptotic behavior and performance
of maximum likelihood estimators in more complex statistical models can be studied in [51,52].
Estimation methods for the regression parameters upon a high censoring may be studied by a
mixture structure [53–55].

(iii) An extension of the present study to the multivariate case is also of practical relevance [52,56,57].
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(iv) Incorporation of temporal, spatial, functional, and quantile regression structures in the modeling,
as well as errors-in-variables, and PLS regression, are also of interest [26,29,30,58–63].

Therefore, the proposed methodology in this investigation promotes new challenges and offers an
open door to explore other theoretical and numerical issues. Research on these and other issues are in
progress and their findings will be reported in future articles.
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