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Abstract: The writer’s identification/verification problem has traditionally been solved by analyzing
complex biometric sources (text pages, paragraphs, words, signatures, etc.). This implies the need for
pre-processing techniques, feature computation and construction of also complex classifiers. A group
of simple graphemes (“ S ”, “∩ ”, “ C ”, “∼ ” and “ U ”) has been recently introduced in order to reduce
the structural complexity of biometric sources. This paper proposes to analyze the images of simple
graphemes by means of Convolutional Neural Networks. In particular, the AlexNet, VGG-16, VGG-19
and ResNet-18 models are considered in the learning transfer mode. The proposed approach has the
advantage of directly processing the original images, without using an intermediate representation,
and without computing specific descriptors. This allows to dramatically reduce the complexity of the
simple grapheme processing chain and having a high hit-rate of writer identification performance.

Keywords: writer identification; off-line analysis; simple graphemes; convolutional neural networks

1. Introduction

There are different biometric features that allow the verification or identification of people,
among them is writing. The rhythm of writing, which is unrepeatable and unique, captures particular
graphic characteristics in the text which allow the identification of the author. People recognition
through the analysis of handwritten texts is widely used in different tasks such as identifying
authorship, detecting forgeries, fraud, threats and theft, in documents of different types such as
holographic wills, letters, checks, and so forth [1].

Most state-of-the-art works analyze complex text structures to extract features, such as full pages,
text and paragraphs [2–6], words [7–9] and signatures [10–12]. Working with very complex sources
in order to obtain a high verification ratio results in complexity throughout the entire processing
sequence: developing sophisticated segmentation algorithms for the region of interest, complexity in
the automatic computation of descriptors to represent the original data with low dimensionality and
high execution times for the algorithms.

Contrary to the more traditional literature characterized by the complexity of the structures
used, a new approach begins to consider simple elements of handwritten text to solve the problem
of writer verification. Along these lines, in Reference [13] a new database is proposed containing 6
remarkably simple grapheme types: “e” “S”, “∩”, “C”, “∼”and“ U”. In addition, a new descriptor
is introduced to represent the texture of the handwritten strokes (relative position of the minimum
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gray value points within the stroke) and successful verification tests are performed with a Support
Vector Machine (SVM) based classifier. In Reference [14], it is proposed to represent the texture of
simple graphemes by means of B-Spline transformation coefficients and classifiers based on banks
of SVMs. In Reference [15], the character “e” is excluded because it presents crosses in its structure,
which generates complexity in the computation of descriptors, the Local Binary Patterns (LBP) are
introduced to represent the surface of the simple graphemes, and a classifier based on SVM is built.
Recently, in Reference [16], it was proposed to simplify the structure of the classifier and reduce training
time using Neural Networks of Extreme Learning (ELM). In the aforementioned works, preprocessing
and transformation of the original image are performed, descriptors representing the surface texture
of the grapheme are computed, and classifiers are constructed for the verification of the writer.

In order to simplify the pipeline of simple graphemes processing, without to perform
pre-processing (working directly with the original image), without to compute descriptors, and to
achieve a high rate of writer identification accuracy, this paper proposes to analyze the image of the
Simple Grapheme using Convolutional Neural Networks (CNN). The advantages of this approach are
as follows:

• Directly working with the original image without making any transformations.
• Biometric features are obtained automatically through CNN filters.
• The use of CNN allows a high success rate in the test set because the constructed classifiers

correspond to highly non-linear transformations.
• There are consolidated frameworks for the implementation of CNN networks [17,18], which use

high-performance computing techniques (multi-core and GPUs) to reduce network training time.

In this work, experiments are performed with the network models AlexNet [19], VGG (VGG-16
and VGG-19) [20] and ResNet (ResNet-18) [21]. AlexNet and VGGs networks can be considered
classic convolutional neural networks, as they follow the basic serial connection scheme, that is,
a series of convolutions, pooling, activation layers and finally some completely connected classification
layers. The idea of the ResNet models (ResNet-18/50/101), is to use residual blocks of direct access
connections, with double or triple layer jumps where the input is not weighted and it is passed to
a deeper layer. In this work, this group of CNN networks is adopted because they present a good
compromise between performance, structural complexity and training time.

The structure of this paper is as follows. Section 2 presents an overview of the simple grapheme
database and its traditional representation. Section 3 presents the CNN models adopted in this research.
Section 4 shows the experiments performed. Finally, section 5 presents the conclusions of this paper.

2. An Overview of Simple Graphemes

Simple graphemes were recently reported in Reference [15]. This repository contains five types
of simple graphemes: “S”, “∩”, “C”, “∼” and “U”, for 50 writers, with 100 samples of each simple
grapheme per writer. The images are 24-bit color, 800× 800 pixels in size, with a scanner resolution of
1200 dpi. Figure 1 shows sample images of the simple graphemes contained in the image repository.

(a)Grapheme “S” (b)Grapheme “∩” (c)Grapheme “C” (d)Grapheme“∼” (e)Grapheme “U”

Figure 1. Simple grapheme images.
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The images in this repository have a resolution of 1200 dpi, this is due to the fact that the simple
character methodology used by Aubin et al. [15] is based on texture, and in order to have enough
information, higher resolution is required to provide more detail of the stroke texture, which is enough
to extract biometric information from small text elements. It should be noted that the public databases
resolution of handwritten text (IAM [22], CEDAR [23], CVL [24], RIMES [25]) is 300 dpi. This low
resolution is due to the fact that traditional databases were not designed to analyze small elements of
handwritten text.

As Figure 1 shows, the image of the grapheme has many white pixels (background pixels) that
contain no information. In order to obtain an image that considers only the pixels of the grapheme,
a rectified image is constructed that consists of a “stretched” version of the grapheme [15].

3. Convolutional Neural Network Models for Simple Grapheme Analysis

The CNNs are capable of automatically extracting the characteristics of images [26], making them
suitable for the study of images [27]. The CNN typical architecture is composed in the following way
(illustrated in Figure 2):

• Convolutional Layer: It is a set of convolutional filters which activate the characteristics of
the image.

• Layer of activation function: It is a non-linear activation function.
• Subsampling Layer or pooling layer: It reduces the dimension of the feature banks at the output

of the convolutional layer.
• Fully connected Layer: It flattens the output of the previous layers by converting the output to 1D.
• Softmax Layer: It gives the probabilities of each category as established in the database at the

beginning to perform the classification.

 

INPUT 

CONVOLUTION 

+ 

ReLU 

Pooling 

Output 

 
Fully connected  

So�max 

Figure 2. Basic architecture of a Convolutional Neural Network (CNN).

There are CNNs previously trained for image classification that have learned to extract
characteristics and information from the images, thus using them as a starting point to learn a new task.
Most of these CNNs were trained using the ImageNet database [28], which is used in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [29]. The three main uses of pre-trained CNNs are
shown in Table 1.

Table 1. Applications of pre-trained CNNs [17].

Purpose Description

Transfer Learning Fine-Tune on new dataset

Feature Extraction Use of pre-trained network as a features extractor

Classification Apply pre-trained networks directly to classifications problems
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However, because the original and rectified graphemes are very different from the images included
in the Imagenet database, the graphemes cannot be classified directly using the pretrained CNNs.
Consequently, a learning transfer process invariably takes place. This process consists of properly
adjusting and training the previously trained CNN with the new images. The idea is usually to adjust
the CNN output layers keeping the rest of the network unchanged and taking the pre-trained weights.
Figure 3 illustrates a simplified diagram of the learning transfer process with pre-trained CNNs.

Figure 3. Simplified diagram of the learning transfer process.

This paper adopts CNN models widely known in the literature:

• AlexNet [19]: was one of the first deep networks in and a significant step in the development of
CNNs. It is composed of 5 convolutional layers followed by 3 fully connected layers.

• VGG [20] versions VGG-16 and VGG-19, Developed by the Visual Geometry Group (VGG) of the
University of Oxford, it is an AlexNet enhancement by replacinglarge kernel-sized filters with
multiple 3 × 3 kernel size filters one after another, increasing network depth and thus being able
to learn more complex features.

• ResNet (ResNet-18) [21], is an innovation over previous architecture, solving many of the
problems of deep networks. It uses residual blocks of direct access connections, managing to
reduce the number of parameters to be trained, with a good compromise between performance,
structural complexity and training time.

Table 2 shows the general characteristics of these networks: depth, size of the network, number of
parameters and dimension of the input image. Figure 4 shows the architecture of the AlexNet, VGG-16,
VGG-19 and ResNet-18 networks. The description of the elements that form the blocks of this figure is
as follows:

• Conv: The size of the convolutional filters.
• @: The number of filters to apply.
• s: The stride of the filter over the image.
• ReLU: The activation function at the output of the convolutional filters
• MaxPool: The subsampling operation with the filter dimension.

Table 2. Parameters and dimensions of pre-trained CNNs used [17].

Network Depth Size Parameters (Millions) Image Input Size

AlexNet 8 227 MB 61.0 227-by-227
VGG-16 16 515 MB 138 224-by-224
VGG-19 19 535 MB 144 224-by-224
ResNet-18 18 47 MB 25.6 224-by-224
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Figure 4. General architecture of AlexNet, VGG-16, VGG-19 and ResNet-18.

4. Experiments with Convolutional Neural Networks

This section describes the experiments carried out with simple graphemes and the pretrained
CNNs AlexNet, VGG-16, VGG-19 and ResNet-18, performing learning transfer modality.

Two variants of the grapheme image are considered for the experiments. The first one consists of
the rectified grapheme, which is the approach used in most articles that work with simple graphemes.
The second one consists of the RGB image of the original grapheme, in order to carry out experiments
without transforming the original image. All the images used in this article make up the LITRP-SGDB
database (LITRP- Simple Grapheme Data Base), which is available for download under the signature of a
license agree form on the official site of the database http://www.litrp.cl/repository.html#LITRP-SGDB.

http://www.litrp.cl/repository.html#LITRP-SGDB
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The rectification procedure is composed of a sequence of simple image processing operations that
are graphically represented in Figure 5. The operations sequence is explained in detail in Reference [15],
and can be summarized as follows:

• Convert the color image of the grapheme to a grayscale image using the achromatic component V,
or V channel of the HSV model, generating a single channel grayscale image [30].

• Binarize the grayscale image of the V channel using the well-known Otsu algorithm [31].
• Obtain the morphological skeleton of the binary image of the H channel (white line in Figure 5b).
• Obtain the lines perpendicular to the morphological skeleton (black lines in Figure 5b).
• Finally, build an image with the pixels of the grayscale image that lie on the perpendicular lines.

Figure 5c shows the resulting image from the rectification process. It is important to note that
this rectified image, being grayscale and not including background pixels, dramatically reduces the
dimensionality of the color image of the original grapheme.

Figure 5. Rectification of Graphemes. (a) Segment of Original Simple Grapheme ; (b) Construction of
Rectified Image; (c) Resulting Rectified Image.

In the neural networks constructed, the input corresponds to one of the two representations of the
image and the output corresponds to a vector of 50 elements to represent the number of people that
form the repository. In the training of the CNNs, 3 sets (Training, Validation and Test) are considered
and balanced training sets are created per class. This process consists of: First taking the original set
of images for a grapheme, dividing it randomly into the Training (80%), Validation (10%) and Test
(10%) sets. Second, to avoid bias or imbalance in the network training, the Training set, the number of
samples per person is equated to the smallest number that one of the people contains. This process is
carried out for each grapheme individually, as well as for the rectified graphemes as for the original
ones, in order to have sets with the same number of samples. Table 3 shows the number of samples
from the training, validation and test sets by grapheme. The last row shows the composition of the
sets grouping all the person’s graphemes.

Table 3. Datasets Training-Validation-Test.

Strokes
DataTraining

DataValidation DataTest
Samples Samples/Persons

“C” 2450 49 432 442
“∼” 2000 40 418 424
“∩” 2000 40 428 432
“S” 1950 39 401 401
“U” 2050 41 420 427

Grouped graphemes 9750 195 2114 2119
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To carry out the experiments, the MatLab Deep Learning Toolbox [17] was used, which provides
a framework for designing and implementing deep neural networks with algorithms, pre-trained
models, and applications.The experiments were carried out with a computer server of the following
characteristics: 2x Intel Xeon Gold 6140 CPU @ 2.30 GHz, 36 total physical cores, 24.75 MB L3 Cache
Memory 126 GB, Operatin System Debian GNU/Linux 10 (buster) Kernel 4.19.0-10-amd64 x86_64.

4.1. Experiments with Rectified Simple Grapheme Images

In this experiment, the images of the rectified graphemes obtained by Aubin et al. [15] are used,
these are rectangular images in single channel grayscale of the form w× h× 1 with w much greater
than h (50 × 700 approximately). Then, these images must be resized according to the corresponding
CNN input layer, for AlexNet it is 227 × 227 × 3 and for VGGs and ResNet it is 224 × 224 × 3.
The process consists of first resizing the rectangular image of a channel to a square image of n× n× 1
(n = 224 or n = 227). The grayscale image is then converted into an RGB image, using the same
matrix for the three channels, as shown in Figure 6. This is to adapt the image to the input layer of the
previously trained network.

Figure 6. Rectified Simple Grapheme Resizing Process for Pretrained CNN Input.

Tables 4–7 show the experiments with AlexNet, VGG-16, VGG-19 and ResNet-18 networks,
respectively. For each network, experiments have been carried out with a different number of
epochs, but the table shows the smallest number of epochs that gives the best result on validation set
(there comes a time when increasing the epochs does not improve the accuracy). Training and test
time are expressed in seconds (s).

For the AlexNet, VGG-16 and VGG-19 networks considered, the rectified graphemes have an
average yield close to 90%, the training took 80 epochs. For the ResNet-18 network, the accuracy
results are lower than those of the previous ones, despite training with a more epochs (100 epochs)
and from this point on, the increase in the number of epochs does not improve results. The moderate
level of performance is explained because a lot of information is lost when transforming the image of
the rectified grapheme to the input format of the CNN networks.

Table 4. Rectified Simple Grapheme-AlexNet (epoch = 80).

Strokes
Training Validation Test

Accuracy Time (s) Loss Accuracy Loss Accuracy Time (s)

“C” 98% 3.3887× 103 0.0331 90% 0.4201 93% 0.6226
“∼” 98% 2.7596× 103 0.0307 86% 0.5061 89% 0.6210
“∩” 100% 2.7833× 103 0.0147 91% 0.4291 92% 0.6262
“S” 100% 2.6778× 103 0.0054 91% 0.4042 88% 0.6035
“U” 98% 2.8385× 103 0.0245 92% 0.3004 93% 0.5738

Grouped 100% 2.1066× 104 0.0271 90% 0.4195 90% 2.3997
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Table 5. Rectified Simple Grapheme - VGG-16 (epoch = 80).

Strokes
Training Validation Test

Accuracy Time (s) Loss Accuracy Loss Accuracy Time (s)

“C” 100% 3.3154× 104 0.0126 89% 0.6058 90% 2.6648
“∼” 100% 2.6981× 104 0.0016 90% 0.3463 87% 2.5534
“∩” 100% 2.6975× 104 0.0008 90% 0.4733 90% 2.5969
“S” 100% 2.6196× 104 0.0058 91% 0.4791 81% 2.4709
“U” 100% 2.7947× 104 0.0026 89% 0.4293 90% 2.5750

“Grouped” 100% 1.9607× 105 0.0004 90% 0.4573 90% 11.3092

Table 6. Rectified Simple Grapheme - VGG-19 (epoch = 80).

Strokes
Training Validation Test

Accuracy Time (s) Loss Accuracy Loss Accuracy Time (s)

“C” 100% 3.9447× 104 0.0076 88% 0.6127 89% 3.0580
“∼” 100% 3.2043× 104 0.0002 89% 0.5779 90% 2.8303
“∩” 100% 3.2032× 104 0.0101 90% 0.4322 90% 2.9161
“S” 100% 3.0957× 104 0.0002 88% 0.4601 89% 2.6845
“U” 100% 3.3076× 104 0.0029 88% 0.4250 88% 2.8272

“Grouped” 100% 2.3232× 105 0.0052 90% 0.4330 91% 12.5139

Table 7. Rectified Simple Grapheme - ResNet-18 (epoch = 100).

Strokes
Training Validation Test

Accuracy Time (s) Loss Accuracy Loss Accuracy Time (s)

“C” 91% 1.0918× 104 0.7492 73% 1.2662 77% 0.8327
“∼” 92% 8.9056× 103 1.1301 61% 1.7404 67% 0.9581
“∩” 97% 8.9344× 103 0.9568 69% 1.5359 77% 0.9423
“S” 92% 8.6529× 103 1.0892 62% 1.7339 65% 0.8589
“U” 91% 9.2122× 103 1.0614 68% 1.5047 74% 0.8495

“Grouped” 98% 5.1184× 104 0.2912 69% 0.9947 70% 3.3401

Figure 7 shows the test accuracy of applying the pre-trained CNNs to the rectified graphemes.
It is observed that AlexNet, which is the simplest neural network, has the best results in general.
Results get worse as network size increases.

Figure 8 shows the network training times for each rectified grapheme. The AlexNet and
VGG16/VGG19 networks of similar architecture, as is known, the execution time increases as the
depth of the network increases (epochs = 80). For ResNet-18, despite having trained with a greater
number of epochs (epochs = 100) and being similar in depth to the VGGs, the training time is much
less similar to that of AlexNet, which is due to the fact that it trains significantly fewer parameters
than the other networks.
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Figure 8. Rectified Simple Grapheme Training time of AlexNet, VGG-16/VGG-19 and ResNet-18 networks.

4.2. Experiments with Original Simple Grapheme Images

In order not to carry out the procedure of calculating the rectified grapheme and thus avoid this
stage of the study process of the original graphemes, experiments are carried out with the RGB image
of the original grapheme. The original image should be resized to match the size of the input image
for each network, as the original dimension of the graphemes is about 800 × 800 × 3. For AlexNet it
resizes to (227 × 227 × 3) and for VGG/ResNet to (224 × 224 × 3). This is illustrated in Figure 9.

Tables 8–11 show the experiments with AlexNet, VGG-16, VGG-19 and ResNet-18 networks,
respectively. Network training is performed by increasing the number of epochs until the error in the
validation set reaches a minimum value. This process is carried out for all graphemes. For AlexNet,
VGG-16 and VGG-19 networks the case of 50 epochs and for ResNet-18 the case of 80 epochs is shown.
Likewise, the Tables show the execution times of the training of the CNNs and the classification times
for each grapheme once the CNNs have been trained with the new images.

It can be observed that the results are very similar for the all networks, both for the individual
graphemes and for the grouping of all the graphemes, ranging between 95% and 98%. An important
result is that, for this type of images, a small network such as the VGG-16 is sufficient to obtain
high performance. For instance, with the VGG-16 network, the characters that presented the best
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performance are “S” and “∼”, reaching a 98% hit-rate in the test set. Besides, it is observed that
ResNet-18 with dimensions similar to VGGs but with different architecture achieves adequate
performance but with substantially shorter training times.
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Table 8. Original Simple Grapheme - Alexnet (epoch = 50).

Strokes
Training Validation Test

Accuracy Time (s) Loss Accuracy Loss Accuracy Time (s)

“C” 100% 2.5583× 103 0.0072 92% 0.1592 95% 2.2047
“∼” 100% 2.1007× 103 0.0138 96% 0.0964 96% 2.1739
“∩” 98% 2.0193× 103 0.0551 96% 0.1359 95% 2.3551
“S” 98% 2.0381× 103 0.0261 96% 0.1269 95% 2.1078
“U” 100% 2.0381× 103 0.0102 97% 0.1222 97% 2.1078

“Grouped” 98% 1.6506× 103 0.0302 98% 0.0674 98% 8.3148

Table 9. Original Simple Grapheme - VGG-16 (epoch = 50).

Strokes
Training Validation Test

Accuracy Time (s) Loss Accuracy Loss Accuracy Time (s)

“C” 100% 2.1117× 103 0.0053 96% 0.1232 97% 3.8204
“∼” 100% 1.7282× 103 0.0051 96% 0.1372 98% 3.4027
“∩” 98 % 1.7286× 103 0.0209 96% 0.1252 95% 3.4645
“S” 100% 1.6690× 103 0.0134 99% 0.0495 98% 3.2534
“U” 100% 1.6690× 103 0.0046 95% 0.0620 97% 3.2534

“Grouped” 100% 1.250× 104 0.0063 98% 0.0657 98% 13.9850

Table 10. Original Simple Grapheme - VGG-19 (epoch = 50).

Strokes
Training Validation Test

Accuracy Time (s) Loss Accuracy Loss Accuracy Time (s)

“C” 100% 2.5171× 104 0.0003 95% 0.1667 96% 3.8216
“∼” 100% 2.0387× 104 0.0019 99% 0.0551 96% 3.6044
“∩” 100% 2.0408× 104 0.0032 97% 0.1133 95% 3.6994
“S” 100% 1.9715× 104 0.0002 98% 0.0613 98% 3.4340
“U” 100% 2.1154× 104 0.0017 98% 0.0912 97% 3.6035

“Grouped” 100% 1.4746× 105 0.0045 99% 0.0368 98% 14.8049
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Table 11. Original Simple Grapheme - ResNet-18 (epoch = 80).

Strokes
Training Validation Test

Accuracy Time (s) Loss Accuracy Loss Accuracy Time (s)

“C” 100% 9.3605× 103 0.3718 96% 0.5731 97% 3.9659
“∼” 100% 7.5222× 103 0.4863 96% 0.6277 97% 2.1457
“∩” 98% 7.6248× 103 0.5288 96% 0.6752 96% 3.7939
“S” 100% 7.3106× 103 0.4845 96% 0.6772 96% 2.1489
“U” 100% 7.7572× 103 0.4832 96% 0.6468 97% 2.0816

“Grouped” 100% 5.5884× 104 0.0435 97% 0.1408 98% 8.5559

Figure 10 shows the test accuracy of applying the pre-trained CNNs to the original simple
graphemes. It is observed that all the used networks achieve good results, being the VGG-16 the one
with the best performance.

Original Simple Grapheme
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Figure 10. Original Simple Grapheme Test accuracy with AlexNet, VGG-16/VGG-19 and ResNet-18 networks.

Figure 11 shows the boxplots of the test set classification for all the networks used, in order to
show the classification distribution of each grapheme by person. It is observed that the standard
deviation of the classification results is very low for all networks, that the central tendency is high,
and that there is very little presence of outliers. In particular, it is observed that the AlexNet network is
the one with the greatest deviation. From these figures, it is possible to conclude a correct training and
an adequate generalization (classification of the Test set).

Figure 12 shows the training times of the networks used in this work (third column of Tables 8–11).
It is observed that for networks of the same type (AlexNet and VGGs) the training time increases as
the depth of the network increases. The network that stands out is ResNet-18, having a depth similar
to that of VGGs networks and being trained with a greater number of epochs, the training time is less.
It can be objectively concluded that in time/accuracy ResNet is the network with the best performance.
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(a)AlexNet BoxPlot (b)VGG-16 BoxPlot

(c)VGG-19 BoxPlot (d)ResNet-18 BoxPlot

Figure 11. BoxPlots of Test Classification.
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Figure 12. Original Simple Grapheme Training Time with AlexNet, VGG-16/VGG-19 and ResNet-18 networks.
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4.3. Comparison with Other Approaches

Table 12 shows the results obtained in different works regarding writer verification on the
repository of simple graphemes. The upper part of the table concentrates other approaches, and the
lower part presents the results of this paper.

In Reference [13] a descriptor called Relative Position of the Minimun Gray Level Points
(RPofMGLP) is proposed. The final descriptor is a vector whose elements correspond to the euclidean
distance between the lower-gray value line and the considered reference edge. Said distance is
measured over the perpendicular line that joins the point of the skeleton to the appropriate edge.

In Reference [14] a descriptor is proposed that corresponds to the coefficients of the B-Spline
transformation of the signal of the descriptor RPofMGLP (BSC-RPofMGLP).

In Reference [15] various descriptors are proposed to represent the simple grapheme. The first
one corresponds to the gray level of the morphological skeleton points (GLofSK). It assumes that there is
not a significant variation in the gray level perpendicularly to the skeleton. The second one corresponds
to the Average Gray Level of the Skeleton Perpendicular Line (AGLofSPL), which attempts to represent
the horizontal and vertical variability of the gray levels with respect to the skeleton. The third one
corresponds to the width of the grapheme, which was measured using the lines perpendicular to the
skeleton (WofGra). Finally, it proposes the Local Binary Patterns of the grapheme surface (LBPofGra).

In Reference [16] the LBPofGra descriptor is considered but building classifiers based on Single
Layer Extreme Learning Machine (ELM) networks and on Multiple Layer Extreme Learning Machine
(ML-ELM).

Table 12 reinforces the idea that simple graphemes have enough biometric information for the
writer verification. The best descriptors from other works are AGLofSPL [15] and LBPofGra [15],
both with an average performance of 98%. Processing the Original Graphemes through CNN
gives a performance of 97% for the case of VGG-16. The CNN-based approach allows to obtain
performance similar to the best results of other works but substantially simplifying the Simple
Grapheme processing line.

Table 12. Comparison respect to other approaches.

Descriptor Classifier “C” “∼” “∩” “S” “U” Average Grouped

RPofMGLP [13] SVM 97% 97% 97% 98% 97% 97% –
BSC-RPofMGLP [14] SVM 97% 97% 97% 98% 97% 97% –

GLofSK [15] SVM 83% 80% 82% 79% 83% 81% –
AGLofSPL [15] SVM 98% 98% 98% 98% 98% 98% –

WofGra [15] SVM 96% 93% 96% 92% 94% 94% –
LBPofGra [15] SVM 98% 98% 98% 100% 98% 98% –
LBPofGra [16] ELM 91% 93% 91% 91% 92% 92% 90%
LBPofGra [16] ML-ELM 95% 96% 96% 95% 95% 96% 92%

Original Grapheme

AlexNet 95% 96% 95% 95% 96% 96% 98%
VGG-16 97% 98% 95% 98% 97% 97% 98%
VGG-19 96% 96% 95% 98% 97% 96% 98%

ResNet-18 97% 97% 96% 96% 97% 97% 98%

5. Conclusions

In this work, a scheme for processing simple graphemes for writer identification is presented.
The approach is based on the use of convolutional neural networks.

The experimentation considered the image of rectified grapheme (traditional representation of
simple graphemes) and the image of the original grapheme. The AlextNet, VGG-16, VGG-19 and
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ResNet-18 models have been adopted, due to the fact that they present an adequate compromise
between accuracy and training time.

The best results have been obtained with the original grapheme image and ResNet-18 Neural
Network, considering the accuracy and time trade-off. Using ResNet-18, an average hit-rate of 97% has
been achieved considering individual graphemes, and 98% of hit-rate considering grouped graphemes.
The results show a high level of performance of the original grapheme, without the need to transform
the image or compute specific descriptors, drastically reducing the complexity of the simple grapheme
processing chain.
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Abbreviations

The following abbreviations are used in this manuscript:

SVM Suport Vector Machine
LBP Local Binary Pattern
ELM Single Layer Extreme Learning Machine Neural Network
ML-ELM Multiple Layer Extreme Learning Machine Neural Network
CNN Convolutional Neural Network
VGG-16 VGG-16 Convolutional Neural Network Model
VGG-19 VGG-19 Convolutional Neural Network Model
AlexNet AlexNet Convolutional Neural Network Model
ResNet-18 Residual Convolutional Neural Network Model
HSV Hue-Saturation-Value Color Model
RPofMGLP Relative Position of the Minimun Gray Level Points
BSC-RPofMGLP B-Spline Coefficient of Relative Position of the Minimun Gray Level Points Signal
GLofSK Gray level of the Skeleton Points
AGLofSPL Average Gray Level of the Skeleton Perpendicular Line
WofGra With of the Grapheme
LBPofGra Local Binary Pattern of the Grapheme Surface.
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