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Abstract: Water deficit represents an important challenge for wheat production in many regions of the
world. Accumulation and remobilization of water-soluble carbohydrates (WSCs) in stems are part of
the physiological responses regulated by plants to cope with water stress and, in turn, determine grain
yield (GY). The genetic mechanisms underlying the variation in WSC are only partially understood.
In this study, we aimed to identify Single Nucleotide Polymorphism (SNP) markers that account
for variation in a suite of WSC and GY, evaluated in 225 cultivars and advanced lines of spring
wheat. These genotypes were established in two sites in the Mediterranean region of Central Chile,
under water-limited and full irrigation conditions, and assessed in two growing seasons, namely
anthesis and maturity growth periods. A genome-wide association study (GWAS) was performed
by using 3243 SNP markers. Genetic variance accounted for 5 to 52% of phenotypic variation of the
assessed traits. A rapid linkage disequilibrium decay was observed across chromosomes (r2 ≤ 0.2 at
2.52 kbp). Marker-trait association tests identified 96 SNPs related to stem weight (SW), WSCs, and
GY, among other traits, at the different sites, growing seasons, and growth periods. The percentage
of SNPs that were part of the gene-coding regions was 34%. Most of these genes are involved in
the defensive response to drought and biotic stress. A complimentary analysis detected significant
effects of different haplotypes on WSC and SW, in anthesis and maturity. Our results evidence both
genetic and environmental influence on WSC dynamics in spring wheat. At the same time, they
provide a series of markers suitable for supporting assisted selection approaches and functional
characterization of genes.

Keywords: carbohydrate distribution; water deficit; grain filling; wheat breeding; genome; Mediter-
ranean climate

1. Introduction

Bread wheat (Triticum aestivum L.) is one of the world’s most important cereal crops
in terms of cultivated area and economic activity [1]. It is expected that global demand
for bread wheat will increase by 70%, by 2050, in line with the projected growth in world
population [2]. Drought and high temperatures are the most important abiotic factors
affecting nearly 200 million ha of global wheat production [3]. Wheat is very sensitive to
climatic and environmental conditions [4], which is reflected in different yields when the
same genotype is grown under water-limited and full irrigation conditions [5].

In Mediterranean-climate regions, temperate cereals like wheat are usually exposed
to a severe water deficit during the grain filling period, the so-called terminal drought-
stress [6–9]. This water deficit leads to reductions in canopy photosynthesis, as well as lower
levels of assimilate transfer to the grain, leading to smaller kernel weights and GY [7,10].
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Water-soluble carbohydrates (WSCs) are accumulated in stems during pre-anthesis (and
up to 20% of them after anthesis in wheat) as reserves, and later these are remobilized to
the grain [11–13], reducing the negative effects of water deficit. Indeed, the contribution of
stem WSCs to grain growth could be very significant under water-deficit conditions [14].
A wide genetic variability in stem WSCs has been reported for wheat. Considering that
variability, high and low WSC genotypes with differential yield, stem biomass, or yield
tolerance index have been identified, utilizing recombinant inbred lines [12], cultivars
and advanced semi-dwarf lines [13,15,16], lines deriving from synthetic hexaploids [14],
and double-haploids populations [17]. The variation in total WSC has been attributed to
genotypic variation in components of the fructan biosynthesis [16,18].

Physiological traits associated with tolerance to water deficit, such as accumulation
and remobilization of stem WSCs, are included in some breeding programs, to increase
yield in rainfed environments [19,20]. These traits are quantitative, determined by multi-
genic control, and strongly influenced by the environment [21]. The “dissection” of complex
traits has been enhanced by the development of analysis technologies focused on identify-
ing quantitative trait loci (QTL) underlying phenotypic variation [22–25]. Analysis of can-
didate genes and genome-wide association studies (GWASs) have been performed in bread
wheat to identify SNP markers controlling traits such as dehydration tolerance [26,27],
leaf rust resistance [28], grain yield [29], carbon isotope discrimination [30], kernel and
root morphology [31,32], resistance to low nitrogen [33], and leaf traits [34], among others.
For instance, a GWAS analysis of stem WSCs at their maximum concentration (~14 days
post-anthesis) was performed in 166 Chinese bread wheat cultivars (grown in four en-
vironments), using 18,207 SNP markers, and this identified 52 significant marker-trait
associations on all wheat chromosomes except for 2A, 2D, 4D, 5B, 6A, and 6D [35]. Another
study conducted in a large collection (n = 990) of bread wheat genotypes in Australia re-
vealed significant associations between stem WSCs at post-anthesis and molecular markers
(SNPs and diversity arrays technology (DArT)) located on chromosomes 1A, 1B, 1D, 2D,
and 4A [36]. Recently, Fu et al. [37] conducted a GWAS on 166 wheat accessions, from China
and other countries, utilizing SNP arrays. They identified 19–36 significant loci associated
with WSC (measured by near-infrared spectroscopy) at 10 to 30 days post-anthesis. These
loci were distributed across the seven groups of chromosomes.

In the present study, we performed a GWAS and a haplotype analysis, to identify
SNP markers accounting for variation in a suite of stem traits, including weight, the WSC
content at anthesis and maturity, and the apparent remobilization of stem WSCs. We
analyzed 225 advanced spring wheat lines, which were established at two sites in the
Mediterranean-climate region of Central Chile, under water-limited and full irrigation
conditions, respectively. These wheat genotypes were obtained from different breeding pro-
grams developed by research institutions in Chile, Uruguay, and Mexico. We hypothesized
that, in a diverse set of accessions, a high-density genotyping with SNP markers and the
linkage disequilibrium present in specific regions of the genome would allow identification
of new genome-phenotype associations for stem carbohydrate traits related to tolerance to
water deficit. This study complements our previous research [15,16,30] on the genetic and
genomic characterization of physiological and agronomical traits of bread wheat under
water deficit. At the same, considering the importance of the genotype by environment in-
teraction on wheat yield and adaption, this study aimed to broaden our current knowledge
about the marker-trait associations, particularly under specific conditions representative of
the South American Mediterranean climate. Our study analyzed that sort of associations,
integrating two analytical approaches, single-marker and haplotype association tests. This
topic has been scarcely described for other studies dealing with WSC and yield traits in
wheat. The SNP-markers identified by these approaches contribute to defining candidate
genes suitable for improving, by traditional or biotechnological breeding methods, both
adaptive and agronomic traits in wheat. This will be required to keep its productivity
under more challenging environmental conditions.
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2. Results

2.1. Grain Yield, Stem Carbohydrate Accumulation, and Remobilization Were Influenced by
Genotype and Site

We compared the 225 wheat cultivars and advanced lines grown at two sites during
2012, to analyze the effect of contrasting water regimes on genotype performance. These
sites, Cauquenes and Santa Rosa, represented water-limited (rainfed) and full irrigated
conditions, respectively. Large differences in GY were observed between both sites, with an
average of 3140 ± 550 and 9820 ± 970 kg ha−1 at Cauquenes and Santa Rosa, respectively
(Figure 1a). The opposite pattern was observed for SWa, WSCa, and ARWSC (Figure 1b–f),
indicating an increase in these traits in response to a lower water availability (data distri-
butions for the other traits are in Supplementary Materials Figure S1). Mean values for
the different traits in each site conditions are given in Supplementary Materials Table S1.
Analysis of variance revealed a significant genotype by site effect for GY, SWm, WSCm,
WSCCm and WSCCa/m2 (Table 1). For the other traits, the genotype (G) and site (S) main
factors were both significant. The relative importance of the genotype by site (GxS) interac-
tion was reflected in the percentage of phenotypic variance that this factor accounted for,
ranging from 12.4 to 18.3% for SWm and WSCCa/m2, respectively. The genetic variance,
estimated by σ2

G, ranged from 5.0 to 51.6% of the phenotypic variation for WSCm and
SWa, respectively.

Figure 1. Data distribution for a selected set of traits, measured at Cauquenes (Cau; water-limited)
and Santa Rosa (SRos; full irrigation) in 2012. Violin plots represent the data distribution of 225 geno-
types. GY, grain yield (a); ARWSCs, apparent remobilization of water-soluble carbohydrates (b); SWa,
stem weight at anthesis (c); SWm, stem weight at maturity (d); WSCa, water-soluble carbohydrates
at anthesis (e); WSCm, water-soluble carbohydrates at maturity (f).
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Table 1. ANOVA and estimate of variance components for traits evaluated in 225 genotypes at Cauquenes (water-limited)
and Santa Rosa (full irrigation) sites, in 2012.

Trait ANOVA (p-Value) Variance Components (% σ2
P) Ratio

Genotype Site Rep(Site) Genotype X Site σ2
G σ2

GxS σ2
e σ2

G/σ2
P

GY <0.0001 <0.0001 <0.0001 0.0002 16.1 15.3 68.6 0.16
SWa <0.0001 <0.0001 0.147 0.2303 51.6 1.9 46.5 0.52
SWm <0.0001 0.88 0.2302 <0.0001 46.6 12.4 41.0 0.47
WSCa 0.0115 <0.0001 0.1025 0.3557 5.8 1.9 92.3 0.06
WSCm 0.0003 <0.0001 0.0032 0.0279 5.0 9.4 85.7 0.05
WSCCa <0.0001 <0.0001 0.0527 0.2968 29.0 2.0 69.1 0.29
WSCCm <0.0001 <0.0001 0.012 0.0003 17.9 15.3 66.8 0.18

WSCCa/m2 <0.0001 <0.0001 0.0006 0.0001 5.8 18.3 75.9 0.06
WSCCm/m2 <0.0001 <0.0001 0.0943 0.3662 13.5 1.5 84.9 0.14
ARWSC <0.0001 <0.0001 0.0874 0.9364 19.5 0.0 80.5 0.20

GY, grain yield; SWa, stem weight at anthesis; SWm, stem weight at maturity; WSCa, water-soluble carbohydrate concentration at anthesis
(mg/g); WSCm, water-soluble carbohydrate concentration at maturity (mg/g); WSCCa, total WSC content at anthesis (mg/stem); WSCCm,
total WSC content at maturity (mg/stem); WSCCa/m2, WSCCa per area unit; WSCCm/m2, WSCCm per area unit; ARWSCs, apparent
remobilization of water-soluble carbohydrates; GxS, genotype by site interaction.

2.2. Significant SNPs Were Detected in Association with Stem Carbohydrate Accumulation
and Remobilization

The single-SNP tests identified ninety-six significant associations across all sites
(Table 2). The total number of significant SNPs varied according to the trait analyzed,
ranging from 2 (for SWa and SWm) to 23 (for WSCa), but it also varied depending on the
site, from 5 (Cauquenes 2011) to 36 (Santa Rosa FI 2011). The identified SNPs were specific
for each site and year, as is depicted in Supplementary Materials Figure S2. Significant
SNPs were distributed across almost all the wheat genome, with a higher representation of
6B and 6D chromosomes, which had 10 and 14 SNPs, respectively. Details of the significant
SNPs per chromosome are provided in Supplementary Materials Table S2.

Table 2. Number of single-SNP markers significantly associated (p-value < 0.001) with grain yield
and stem WSC traits, in the different assessed conditions.

Trait a Site/Condition b

Cau 2011 Cau 2012 SRosFI2012 SRosFI2011 SRosMWS2011 Total

GY 4 4
SWa 2 2
SWm 1 1 2
WSCa 22 1 23
WSCm 2 3 5
WSCCa 1 1 5 7
WSCCm 3 5 3 11

WSCCa_m2 1 7 7 15
WSCCm_m2 2 1 6 9

ARWSC 18 18

Total 5 26 12 36 17 96
a Traits: GY, grain yield; SWa, stem weight at anthesis; SWm, stem weight at maturity; WSCa, water-soluble
carbohydrate concentration at anthesis (mg/g); WSCm, water-soluble carbohydrate concentration at maturity
(mg/g); WSCCa, total WSC content at anthesis (mg/stem); WSCCm, total WSC content at maturity (mg/stem);
WSCCa/m2, WSCCa per area unit; WSCCm/m2, WSCCm per area unit; ARWSC, apparent remobilization of
water-soluble carbohydrates. b Site/condition: Cau, Cauquenes (water-limited site); SRosFI2011 and SRosFI2012,
seasons 2011 and 2012, Santa Rosa full irrigation; SRosMWS2011, Santa Rosa mild water stress, season 2011.

The highest proportion (64%) of significantly associated SNPs was located within
intergenic regions, whereas nearly a third of them (34%) were part of gene coding re-
gions (Figure 2a); for this last category, 37% encoded proteins without a characterized
function and 63% were proteins participating in energy/metabolism (18%), protein syn-
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thesis/modification (12%), transcription (12%), and signal transduction, among others
(Figure 2b).

Figure 2. Classification of significant SNPs according to their genome location (a) and functional
category (b).

A list of SNP-markers significantly associated (p-value < 0.001 and q-value < 0.15)
with the assessed traits is presented in Table 3 (a complete list is included in Supplementary
Materials Table S3). For WSCa in Cauquenes, in 2012, the detected SNPs belonged to
genes encoding a serine/threonine-protein kinase, a guanosine nucleotide diphosphate
dissociation inhibitor, a strictosidine synthase, an ABC transporter C family member 10,
and a hypersensitive induced response protein 3. These proteins are part of functional
categories, such as protein synthesis or modification, energy or metabolism, cell transport,
and pathogen defense. Other SNPs, located in genes encoding uncharacterized proteins,
were also identified for WSCa in Cauquenes, 2012, and ARWSC in Santa Rosa, 2011. Finally,
for ARWSC and WSCCa/m2 in Santa Rosa, 2011, some significant SNPs were also located
in intergenic regions. In terms of the specific effect of each SNP on trait variation (R2), it
ranged from 8.4% (0.0837) to 14.9% (0.1491).

2.3. A Rapid Linkage Disequilibrium (LD) Decay Was Observed across Chromosomes

The extent of linkage disequilibrium (LD) was analyzed across each chromosome. On
average, LD over physical distance decayed to r2 ≤ 0.2 at 2.52 kbp. The variation in the
decay depended on the specific chromosomes, with the most rapid decay observed on
chromosome 2D (r2 ≤ 0.2 at 1.09 kbp) and the slowest decay on chromosome 6D (r2 ≤ 0.2 at
8.31 kbp). Graphs showing the LD decay per chromosome are included in Supplementary
Materials Figure S3.
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Table 3. List of selected SNP-markers associated with the assessed traits. A complete list is included in Supplementary Materials Table S3.

Trait a Site/Condition b Marker SNP Chr. p-Value q-Value R2 Position Protein Functional
Category Ensembl Gene ID

WSCa Cau 2012 iniaGBS56801 C/T 3A 2.5 × 10−5 0.0818 0.1232 Gene serine/threonine-
protein kinase

Protein synthe-
sis/modification

TRIAE_CS42_3AS_
TGACv1_212383_AA0700440

Cau 2012 iniaGBS12206 C/T 4B 0.0002 0.1136 0.1014 Gene Uncharacterized TRIAE_CS42_4BL_TGA-
Cv1_320632_AA1045170

Cau 2012 iniaGBS21514 A/G 5D 0.0003 0.1136 0.0981 Gene

Guanosine
nucleotide

diphosphate
dissociation

inhibitor

Energy/metabolism TRIAE_CS42_5DS_TGA-
Cv1_456722_AA1476920

Cau 2012 iniaGBS13140 A/T 5B 0.0004 0.1247 0.0908 Gene Strictosidine
synthase Energy/metabolism TRIAE_CS42_5BL_TGA-

Cv1_404735_AA1309530

Cau 2012 iniaGBS61502 A/G 1A 0.0007 0.1247 0.0837 Gene ABC transporter C
family member 10 Transport TRIAE_CS42_1AL_TGA-

Cv1_000028_AA0000820

Cau 2012 iniaGBS86062 C/G 6B 0.0007 0.1247 0.0861 Gene
Hypersensitive

induced response
protein 3

Cell
disease/defense

TRIAE_CS42_5BL_TGA-
Cv1_404707_AA1308960

ARWSC SRosFI2011 iniaGBS83719 G/T 6D 2.3 × 10−6 0.0017 0.1491 Intergenic Non-coding

SRosFI2011 iniaGBS76557 G/T 6D 6.8 × 10−6 0.0034 0.1373 Gene Uncharacterized TRIAE_CS42_U_TGA-
Cv1_644569_AA2140450

WSCCa/m2 SRosFI2011 iniaGBS52443 A/G 6B 0.0001 0.1000 0.1248 Intergenic Non-coding

SRosFI2011 iniaGBS52444 G/T 6B 6.4 × 10−5 0.1000 0.1248 Intergenic Non-coding

SRosMWS201 iniaGBS24966 A/C 7B 0.0002 0.3181 0.0993 Gene Endoglucanase Energy/metabolism TRIAE_CS42_7BS_TGA-
Cv1_592132_AA1931340

a Traits: WSCa, water-soluble carbohydrate concentration at anthesis; ARWSC, apparent remobilization of water-soluble carbohydrates; WSCCa/m2, total WSC content at anthesis per area unit. b Site/condition:
Cau, Cauquenes (water-limited site); SRosFI, Santa Rosa full irrigation; SRosMWS, Santa Rosa mild water stress.
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The LD observed for two representative genomic regions containing significant SNPs
is depicted in the heatmaps in Figure 3. The first corresponds to an intergenic region
(1870 bp) located on chromosome 6D. This region contained the markers iniaGBS52443
(SNP1382) and iniaGBS52444 (SNP1383), which were significantly associated with WSCCa
and WSCCa/m2 (Figure 3a, Table 3, and Supplementary Materials Table S3). The second
region (768 bp) is on chromosome 3A, and it encodes a serine/threonine-protein kinase. A
marker within this gene, iniaGBS56801 (SNP1507) was associated with WSCa (Figure 3b).
These SNPs, in an intergenic and gene region, were part of moderate-to-high LD and low
LD regions, respectively.

Figure 3. Linkage disequilibrium heatmaps for two representative genomic regions containing signif-
icantly associated single-SNPs (indicated with asterisks). (a) Markers SNP1382 (iniaGBS52443) and
SNP1383 (iniaGBS52444), located in an intergenic region, and which were significant for both WSCCa
and WSCCa/m2. (b) Marker SNP1507 (iniaGBS56801), part of a gene encoding a serine/threonine-
protein kinase, which was significant for WSCa.

2.4. Single-SNP Markers Are Part of Significant Haplotypes in Association with Traits

As an insight to determine the effect of haplotypes on the studied traits, we carried out
an SNP-haplotype analysis for three gene regions harboring significant single-SNP markers.
For the serine/threonine-protein kinase gene (chromosome 3A), we identified four signifi-
cant haplotypes that were associated with SWa and another three associated with SWm,
WSCCm, and WSCCa in Cauquenes, 2012 (Table 4). Analysis of the intergenic region on
chromosome 6D identified three significant haplotypes for SWa, three for SWm, and one for
WSCCm/m2, in Santa Rosa, 2011 (full irrigation). Finally, for the gene encoding an endoglu-
canase, present on chromosome 7B, we identified two significant haplotypes in association
with WSCa and WSCCa/m2, in Santa Rosa, 2011 (mild water stress). From these results,
we further considered SWa as a study case, to analyze the specific effect of haplotypes
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on phenotype. In Santa Rosa, 2011 (full irrigation), haplotypes H1 (ACACCAGGGCCT)
and H3 (CCGTTAGGGTTC), belonging to the intergenic region, differed significantly in
terms of their mean values for SWa (Figure 4a). Similarly, for Cauquenes 2012, the H1
(GTGTTCAT) and H4 (GTAGCTGT) haplotypes in the serine/threonine-protein kinase
gene had a significantly lower mean SWa than H2 (GTAGCTAC) and H3 (TTAGCCAT)
(Figure 4b).

Table 4. Haplotypes identified for selected genome regions containing significant single SNP-markers.

Site/Condition a Trait Position/Gene GSS b p-Value q-Value Significant
Haplotypes Freq. Code c

SRosMWS2011 WSCa endoglucanase
gene 20.4 0.0024 0.0210 AGACCCC 0.09

WSCCa/m2 endoglucanase
gene 18.9 0.0043 0.0220 CACGTTG 0.03

Cau2012 SWa serine/threonine 30.3 0.0043 0.0205 GTGTTCAT 0.07 H1
GTAGCTAC 0.07 H2
TTAGCCAT 0.03 H3
GTAGCTGT 0.03 H4

SWm serine/threonine 23.2 0.0395 0.0403 GCGTCCAT 0.03
WSCCm serine/threonine 13.0 0.0403 0.0403 GCGTCCAT 0.03

WSCCa/m2 serine/threonine 16.5 0.0102 0.0205 GTAGCTGT 0.03

SRosFI2011 SWa intergenic
region 20.4 0.0024 0.0215 ACACCAG-

GGCCT 0.04 H1

ACACCA-
GAACCT 0.36 H2

CCGTTA-
GGGTTC 0.11 H3

SWm intergenic
region 18.9 0.0043 0.0210 ACACCA-

GGGCCT 0.04

ACACCA-
GAATCT 0.28

CCGTTA-
GGGTTC 0.11

WSCCm/m2 intergenic
region 12.9 0.0444 0.0494 ACACCA-

GGGCCT 0.04

a Site/condition: SRosFI, Santa Rosa full irrigation; SRosMWS, Santa Rosa mild water stress. b GSS, global score statistic. c Haplotype
number for haplotypes identified for Cauquenes, 2012, and Santa Rosa, 2011 (depicted in Figure 4).
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3. Discussion

The GWAS analysis of GY and nine stem WSC traits was performed in a panel of
225 advanced wheat lines and cultivars grown in environments subjected to terminal-
drought-stress and full-irrigation conditions during two growing seasons. Although the
selected genotypes had a relatively narrow range of heading dates (from 79 to 84 days), a
significant effect of genotype, site, or GxS interaction was observed on all the analyzed traits
(Table 1). These effects confirmed the high phenotypic variability for physiological and
agronomic traits estimated previously, when a larger set of genotypes (378 lines, including
those included in this study) was analyzed [15]. Furthermore, in an elite wheat-breeding
population assessed in Australia [38], genotype and site, either as principal or combined
(GxS) factors, were also shown to be significant for WSCC and WSCC/m2 (at approximately
180 degree-days post-anthesis) across environments differing in water availability. In the
current work, the differential influence of genetics relative to other factors (including
environmental ones) was represented by a low-to-moderate σ2

G/σ2
P ratio, which ranged

from 0.05 to 0.52 for WSCm and SWa, respectively (Table 1). These estimates are lower
than others mentioned by Dong et al. [35] for WSC, indicating that this trait is largely
genetically determined (broad-sense heritability of 0.78–0.90). However, distinct genotypes,
experimental conditions, genetic analyses, and methods for measuring WSC would explain
the observed difference between studies.

Genotyping and analysis of LD detected a relatively rapid decay in this parameter over
physical distance (r2 ≤ 0.2 at 2.52 kbp). A similar pattern was reported by Sela et al. [39]
for emmer wheat (Triticum dicoccoides), which decayed from r2 = 0.5 to r2 = 0.1 within a
2 kbp span. These authors suggested a significant effect of recombination operating as
a diversifying force. The breakdown in LD is primarily driven by recombination, so the
extent of LD is expected to vary as an inverse relation to the local recombination rate [40].
In this study, we considered a density of 0.22 SNPs per Mbp (Supplementary Materials
Table S4), after SNP filtering. Considering an average of 14.6 SNPs per Mbp estimated in a
recently published wheat genome sequence [41], further studies should be able to confirm
our estimation for LD decay.

The GWAS analysis using 3243 SNP-markers identified 96 significant associations for
the assessed traits (Table 2). Significant single-SNPs were specific to each site, water regime,
and growing season (Supplementary Materials Figure S2), showing an experiment-specific
pattern of results, and the presence of an overall GxS and genotype by time (GxT) effect (be-
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tween growing seasons). A similar significant involvement of GxS in phenotype variability
in wheat was identified for WSC and WSCC in experiments conducted in China [35] and
Australia [36], respectively. In our study, the number of significant associations depended
on the trait (Table 2) and the chromosome (Supplementary Materials Table S2). The contri-
bution of particular chromosomes within the wheat genome towards yield (e.g., GY) and
WSC traits is variable within the literature describing GWAS results from trials established
on sites with water limitations [30,35,37,42,43]. Indeed, most of the wheat chromosomes
were represented across these studies, and the effect of individual significant SNPs on
phenotypic variation, expressed in terms of R2, was spread across a wide range of values
(up to 16%).

Our association tests showed that most of the significant SNPs (64%) were within inter-
genic regions (Figure 2). This is consistent with the overall distribution of SNPs determined
from information contained in public databases (e.g., National Center for Biotechnology
Information, NCBI), where about 60% of SNPs are in genomic regions outside coding
regions [44]. Such polymorphisms could be part of cis-regulatory elements and modulate
gene expression at a transcriptional level. In contrast, 34% of significantly associated SNPs
were located within genes which, for example, encode proteins such as serine/threonine
protein kinase, strictosidine synthase, ABC transporter, and hypersensitive-induced re-
sponse protein, among others. These types of proteins have been implicated in responses to
stress, membrane transport, signal transduction, and cell death. Other GWAS analyses of
wheat WSC traits have identified candidate genes from two main categories: carbohydrate
metabolism and stress responses [35,37]. Differences among studies are expected due to
the diversity of experimental factors and the genotyping approaches implemented. Previ-
ously, we studied the stem carbohydrate dynamics and expression of genes involved in
fructan accumulation and remobilization during grain growth [16]. In specific, we detected
significant differences (at the transcript level) between tolerant and susceptible genotypes,
under water stress, in the regulation of genes encoding fructan biosynthesis enzymes, such
as fructan 1-fructosyltransferase (1-FFT), fructan:fructan 6G-fructosyltransferase (6G-FFT),
sucrose:fructan 6-fructosyltransferase (6-SFT), fructan 1-exohydrolase w2 (1-FEH w2), and
fructan 1-exohydrolase (1-FEH). These genes have been mapped in different chromosomes.
The 1-FFT-A1 gene was located on chromosome 4A [45]; the 1-FEH w1, w2, and w3 genes
were mapped on chromosomes 6A, 6B, and 6D [46]; and 1-SST genes were isolated and
located on chromosomes 4A, 7A, and 7D [47] of Chinese bread wheat cultivars. However,
after the quality control performed on genotyping data, no SNPs from these genes were
represented in the datasets utilized in our association tests. The use of genotyping 90 K
arrays has recently confirmed the presence of significantly associated SNPs, belonging
to those genes, validating the importance of genes regulating fructan metabolism in the
response of wheat to water stress [37].

From single-SNP associations (Table 3), a set of genes was identified as candidates
for further functional characterization. The first of these is a gene that encodes a ser-
ine/threonine protein kinase. This enzyme has important functions in abiotic and biotic
stress-signaling pathways [48]. In wheat, this type of protein has been identified in re-
sponse to drought [49]. Members of the wheat SnRK gene family (e.g., TaSnRK2.4) have
been implicated in the regulation of enhanced osmotic potential, strengthening tolerance to
drought, salt, and freezing stresses [50]. The second gene encodes a guanosine nucleotide
diphosphate dissociation inhibitor (GDI), a protein interacting with Rab GTPases, which
mediate the targeting and fusion of vesicles in the exocytic and endocytic pathways [51].
In plants, GDI has been related to regulation of the growth of pollen tubes and root hairs,
as well as tolerance to oxygen deprivation [52]. The third gene encodes a strictosidine
synthase (STR), an enzyme that plays an important role in the biosynthesis of terpenoid
indole alkaloids, and in rice it is important for anther development and pollen-wall forma-
tion [53]. In Catharanthus roseus, STR is involved in the response to salinity, low temperature
stress [54], and PEG-induced drought stress [55]. The fourth gene encodes an ABC trans-
porter C family member 10, a protein that uses ATP to transport substances across the cell
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membrane. In wheat, this class of transporter has been localized in the vacuolar membrane
and is involved in grain formation and mycotoxin tolerance [56]. The fifth gene encodes the
hypersensitive induced response protein 3, which is part of the hypersensitive reaction in
plants. It is related to the development of spontaneous lesions in leaves in defense against
pathogen attack, and specifically, this protein triggers cell death in maize, barley, and
rice [57]. Finally, the last of these candidate genes encodes an endoglucanase belonging to
pathogenesis-related (PR) defense proteins, which are accumulated in response to viruses,
bacteria, and fungi, as well as to abiotic factors. In wheat, in particular, endoglucanase is
produced in response to drought [58].

We performed an SNP-haplotype analysis for three gene regions harboring signif-
icant single-SNP markers. This approach allowed for the detection of wider genomic
regions associated with the different phenotypes analyzed (Figures 3 and 4 and Table 4).
Haplotype-based analysis has been proposed as one of the most important developments
in the genetic analysis of crop genomes [59]. Among other features, haplotype-analysis
could capture epistatic interactions between SNPs at a locus, reduce the number of tests,
and provide more power than a single marker when an allelic series exists at a locus [60].
In our study, significant haplotypes were identified in the genome in both coding and
selected intergenic regions. At the same time, the haplotypes included SNPs that were iden-
tified by single-marker associations, evidencing the consistency between both approaches.
Information derived from both of the detection techniques allowed for the definition of
regions with high LD that were significantly associated with WSC traits, and this indicated
significant differences in the performance of genotypes containing specific haplotypes
(Figure 4). A haplotype-based approach also can be an alternative for detecting genome-
trait associations when detection by single-SNP analysis produces a limited number of
significant associations.

4. Materials and Methods

4.1. Association Population and Growth Conditions

A collection of 225 different genotypes of spring wheat, generated by breeding pro-
grams in Uruguay (Instituto Nacional de Investigación Agropecuaria, INIA), Chile (Insti-
tuto de Investigaciones Agropecuarias, INIA), and Mexico (International Wheat and Maize
Improvement Centre, CIMMYT), was utilized as an association population. This set is
part of the 384 lines described and analyzed previously by del Pozo [15], in terms of their
performance under water-limited conditions in a Mediterranean climate. The 225 geno-
types were selected by excluding lines with extreme phenological variation, considering an
average for heading date of between 79 and 84 days.

Wheat genotypes were assessed in two sites located in the Mediterranean climate
region of central Chile: Cauquenes (35◦58′ S, 72◦17 W, 177 m.a.s.l.) and Santa Rosa (36◦32′ S,
71◦55′ W, 220 m.a.s.l). Cauquenes is a rainfed area and represented the water-limited
conditions; annual precipitation was 580 and 600 mm in 2011 and 2012, respectively. Santa
Rosa represented full irrigation (FI) and moderate water stress (MWS) conditions, which
were achieved through support irrigation. Trials were assayed during two consecutive
growing seasons, 2011 and 2012, except for the MWS trial, which was only set up during
2011. Cauquenes corresponds to the Mediterranean drought-prone area of Chile. According
to del Pozo et al. [15], the average annual temperature is 14.7 ◦C, the minimum average
is 4.7 ◦C (July), and the maximum is 27 ◦C (January). The average evapotranspiration is
1200 mm, and the annual precipitation was 410 and 600 mm in 2011 and 2012, respectively.
No irrigation was applied in this site during 2011 and 2012. Santa Rosa corresponds to a
high-yielding area. The average annual temperature in this area is 13.0 ◦C, the minimum
average is 3.0 ◦C (July), and the maximum is 28.6 ◦C. The annual precipitation was 736 and
806 mm, in 2011 and 2012, respectively. Details about the trial establishment, experimental
design, fertilization, control of weeds, irrigation, and soil water monitoring were previously
detailed by del Pozo et al. [15]. Briefly, plants were grown in 2× 1 m plots in rows separated
by 0.2 m, with seeds sown at 20 g/m2. The experiment was established as an alpha-lattice
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design with 20 incomplete blocks, and 20 genotypes per block. A replicate comprised
400 plots and 384 genotypes. Two replicates were included in both trials, except for the
MWS treatment in 2011, at both Cauquenes and Santa Rosa, where only single replicates
were established.

4.2. Agronomic and Physiological Traits

Stem weights at anthesis (SWa) and maturity (SWm) were evaluated in five main stems
per plot per genotype. The concentration of WSC in stems was determined at anthesis
(WSCa) and maturity (WSCm), using the anthrone reactive method [61]. The WSC content
(WSCC) was determined per unit of stem at anthesis (WSCCa = WSCa× SWa) and maturity
(WSCCm = WSCm × SWm), and on a growth-area basis (m2) for the same phenological
stages (WSCCa/m2 and WSCCm/m2). The apparent WSC remobilization (ARWSC) was
calculated as the difference in WSC content between anthesis and maturity. Grain yield
(GY) was determined by harvesting the whole plot.

4.3. Statistical and Genetic Analysis

An approach based on a mixed linear model was applied to assess the genetic variation
underlying the different traits. Initially the normal distribution was evaluated. A transfor-
mation utilizing natural logarithms was used to normalize WSC, WSCC, and WSCC/m2,
for both the anthesis and maturity measurements. An ANOVA was carried out for each
trait, using the following simplified model:

yijkl = µ + Gi + Sj + R(S)k(j) + GxSij + eijkl (1)

where yijkl is the response measured in the l-th plot of the i-th genotype within the j-th
site and the k-th replicate, µ is the overall mean, Gi is the random effect of genotype i,
Sj is the fixed effect of site j, R(S)k(j) is the fixed effect of replicate k within site j, GxSij
is the random interaction effect of genotype i with site k, and eijkl is the random error in
replicate k at site j within genotype i. ANOVA was executed by using the GLM procedure
in SAS 9.2 [62]. Additionally, variance components were estimated by Restricted Maximum
Likelihood, using the MIXED procedure. An estimation of the relative importance of
genetic variation (σ2

G) on phenotypic variation (σ2
p) was estimated by the σ2

G/σ2
p ratio,

where σ2
p = σ2

G + σ2
GxS + σ2

e, and σ2
GxS and σ2

e are the variance components estimated
for the GxS interaction and residual, respectively. These analyses were done only with
data from Cauquenes and Santa Rosa, for the 2012 season, considering that both datasets
included two full replicates.

4.4. Genotyping

Genotyping by sequencing (GBS) was performed, using the Illumina HiSeq 2000
sequencing platform and the bioinformatic approach for SNP identification described
previously by Lado et al. [63]. SNP-markers with a minor allele frequency < 5% and
departure from Hardy–Weinberg equilibrium, as well as those with more than 5% missing
data, were removed for the subsequent analysis stages, utilizing JMP Genomics 7.1 (SAS
Institute, 2013a). The depurated database included 3243 SNP-markers selected from an
initial dataset comprising 8746 SNPs.

4.5. Linkage Disequilibrium

Linkage disequilibrium (LD) was estimated among pairwise combinations of SNPs
per chromosome. It was expressed in terms of the squared correlation of allele frequencies
r2. The r2 value between pairs of SNP markers, within each chromosome, was estimated,
using TASSEL 5.2 [64], with the option of sliding window approach (120 SNPs per window).
To assess the extent of LD, the decay of LD within physical distance (base pairs) between
SNPs, within each chromosome, was evaluated by nonlinear regression analysis of r2

values [65]. Analysis was performed by applying the NLIN procedure in SAS 9.4 [62].
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4.6. Association Analysis

SNP-marker trait association tests were performed using a mixed linear model (MLM),
adjusted for population structure and genetic relatedness, utilizing using TASSEL 5.2 [64].
The population structure matrix (Q) was obtained by principal component analysis (PCA),
whereas the genetic relatedness (kinship) was incorporated as a scaled identity-by-descent
matrix (K). Accession means were adjusted by Best Linear Unbiased Predictor, using Proc
MIXED in SAS v9.2 [62]. The significance associated with the results of the SNP-marker
trait association tests were subjected to multiple testing correction by false discovery rate
(FDR) implemented through the program QVALUE in R [66,67].

4.7. Haplotype Analysis

Association tests between traits and selected genomic regions containing significantly
associated single-SNPs were carried out, using the Haplo.stats package in R [68]. Hap-
lotypes were estimated for each selected genomic region, and their frequencies were
determined by using the modified expectation maximization method of haplotype infer-
ence [69]. Haplotypes and associations with traits were determined by utilizing genotyping,
trait, and PCA matrices for the genotype population. Singleton alleles were discarded, as
well as haplotypes with a frequency < 0.05. A global score statistic and haplotype-specific
scores were derived from generalized linear models. A correction for multiple testing was
also done by FDR, similar to single marker association tests. Significant differences among
least-square means of haplotype classes were determined by ANOVA and the Tukey HSD
test, using the GLM procedure in SAS 9.4 [62].

4.8. Gene Models and Annotations

Gene models and annotations for genes containing significant SNPs were obtained
from the Triticum aestivum genome sequence available at the Ensembl platform [70]. Func-
tional classes were defined using Quick GO [71].

5. Conclusions

Wheat is a key crop for world food sustainability, so genetic improvement in yield for
sites with limited water availability must be a priority under the climate-change scenarios
projected for this century. In that framework, identification and characterization of the
genetic mechanisms underlying adaptive and productive traits are fundamental. In this
study, we identified a series of SNPs controlling the variation in WSC traits in genotypes
grown under different water regimes, in the Mediterranean-climate region of Central
Chile. Most of these significant SNPs are part of gene-encoding proteins involved in the
defensive response to drought and biotic stress. These SNPs represent a starting point
to define candidate genes for functional characterization of their biological role under
water stress. Our results also showed a complex and polygenic inheritance of the assessed
traits. In that sense, the relative influence of genetic or environment (sites and irrigation
conditions) factors was variable, depending on traits. Results from this study provided a
set of SNPs that could be utilized to support marker-assisted selection suitable for future
genetic improvement of spring wheat lines under water-limited areas.

Supplementary Materials: The following are available online, at https://www.mdpi.com/2223
-7747/10/3/539/s1. Table S1: General statistics for the assessed 225 wheat genotypes. Table S2:
Number of significantly associated SNPs by chromosome and trait. Table S3: List of significantly
associated SNP-markers. Table S4: Distribution of analyzed SNP-markers across wheat chromosomes.
Figure S1: Comparative distribution of data for Cauquenes and Santa Rosa site, in growing season
2012. Figure S2: Venn diagrams for significantly associated SNPs according to sites and growing
seasons. Figure S3: Decay of linkage disequilibrium (LD) by chromosome.
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