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Abstract: Improving air quality is an important environmental challenge of our time. Chile currently
has one of the most stable and emerging economies in Latin America, where human impact on
natural resources and air quality does not go unperceived. Santiago, the capital of Chile, is one of the
cities in which particulate matter (PM) levels exceed national and international limits. Its location and
climate cause critical conditions for human health when interaction with anthropogenic emissions is
present. In this paper, we propose a predictive model based on bivariate regression to estimate PM
levels, related to PM2.5 and PM10, simultaneously. Birnbaum-Saunders distributions are used in
the joint modeling of real-world PM2.5 and PM10 data by considering as covariates some relevant
meteorological variables employed in similar studies. The Mahalanobis distance is utilized to assess
bivariate outliers and to detect suitability of the distributional assumption. In addition, we use the
local influence technique for analyzing the impact of a perturbation on the overall estimation of
model parameters. In the predictions, we check the categorization for the observed and predicted
cases of the model according to the primary air quality regulations for PM.

Keywords: air pollution; Birnbaum-Saunders distributions; bivariate regression models; data science;
diagnostics techniques; R software

1. Introduction and Literature Review

Note that particulate matter (PM) with a diameter less than 2.5 micrometers (PM2.5)
is formed by particles small enough to penetrate respiratory pathways until reaching
lungs and alveoli causing risks in public health [1]. Related epidemiological, toxicological
and controlled human exposure studies have been reviewed [2]. This review concluded
that various investigations, focused on individual sources of PM, provide evidence on a
specific source that affects human health. This is the case for atmospheric contamination
derived from vehicle traffic provoking some effects on human health like asthma, exac-
erbation of chronic respiratory diseases, respiratory problems and total cardiovascular
mortality, among others [2]. Other disorders caused by atmospheric pollutants are epilepsy,
headaches and venous thromboembolic disease [3].

For more than three decades, the city of Santiago in Chile has been one of the ur-
ban places that has presented levels exceeding national and international contamination
limits [4]. Its location, topography and meteorology cause critical conditions on human
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health when interaction with anthropogenic emissions exists, a condition that occurs when
air pollution is combined with heat [5]. Thus, during the months of autumn and winter,
pollutants stay trapped in the Santiago valley, which produces atmospheric contamination
in the city. Due to meteorological and topographical factors, there exists an accumulation
of PM and gaseous pollutants during winter, and an increase in solar radiation is observed
during the summer which favors photochemical reactions [6,7].

Periodical episodes of extreme contamination may occur with certain pollutants. Such
pollutants and their high levels vary according to meteorological and geographical fluctua-
tions, which depend on source and type of emission changes. As a result of this variation,
atmospheric contaminant levels are treated as random variables with positive support,
that can be modeled by a probability distribution skewed to the right [7]. Furthermore,
the relationship between meteorological variables and PM has been analyzed around the
world [8] and the most prominent variables in literature are used as covariates for the
predictive models proposed in the present study.

The existing evidence on cardiovascular disease risks and mortality caused by ex-
posure to PM2.5 and PM10 (that is, PM that have diameter less than 10 micrometers),
along with studies published that demonstrate correlation between pollutants, such as
nitrogen dioxide, PM2.5, PM10 and sulfur dioxide [9,10], is essentially the reason that
justifies the need to develop multivariate tools. Consequently, modeling and monitoring of
PM2.5 and PM10 levels must be considered with the goal of predicting critical periods of
contamination.

Multivariate regression is a methodological tool more adequate than marginal re-
gressions, since it considers also the correlation between the response variables. If no
correlation is present, then marginal models for each response can be used. Nevertheless,
if correlation exists, then the marginal modeling may cause inaccurate predictions [10].

The origins of the Birnbaum–Saunders (BS) family of distributions were motivated
by material fatigue studies characterized by vibration in commercial aircrafts. The BS
distribution is often employed to describe phenomena where a certain type of accumulation
provokes that a quantifiable characteristic exceeds a benchmark value [11].

A BS distributed random variable may be represented by transforming another stan-
dard normal distributed random variable. Hence, the parameters of the BS distribution
estimated with the maximum likelihood (ML) method are sensitive to outliers such as with
the normal distribution [12]. In order to attenuate this sensitivity, we can use the Birnbaum–
Saunders-Student-t (BS-t) distribution by considering the relationship between the normal
and BS distributions [13]. Thus, the ML estimators for the BS-t distribution parameters
attribute less weight to such atypical cases when comparing with the BS distribution,
resulting in robust parameter estimators [14].

BS and BS-t distributions are members of a wider family known as generalized BS
(GBS) distributions [10]. The robustness concept used in the present work is on the line
proposed in [15,16] where the normal model is replaced by the t model. The authors
estimated the corresponding parameters by using qualitative robustness [17] (p. 500). Thus,
the BS-t distribution may be used in place of the BS distribution to obtain qualitatively
robust estimates [13,14], providing an approach that avoids the use of traditional robust
estimation methods [18,19] for BS distributions. A concept named quantitative (stability)
robustness also exists [17] (p. 500), which is related to a breakdown point indicating
when an estimator is non-robust, typically with a breakdown point of zero. Hence, as
the breakdown point increases, the estimator is more robust. Note that the breakdown
point is the smallest part of anomalous observations causing the estimator to be non-robust.
The smallest possible breakdown point is the reciprocal of the sample size, which is the
case of the breakdown point of the ordinary least square estimator [17] (p. 500). In the
present study, we focus on qualitative robustness because the determination of quantitative
robustness is beyond our objective stated below, so that this type of robustness will be
explored in a future work.
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Note that multivariate robust regression approaches have been proposed [20]. Multi-
variate outliers can affect the resulting ML estimates. The detection of outliers in multi-
variate observations is often based on the Mahalanobis distance (MD) [21]. Nevertheless,
sometimes outliers do not have an enough large MD, which is due to the fact that the
estimators based on the model employed to generate the MD are non-robust [22,23]. This
is named the masking effect and occurs when a group of extreme observations distorts
the estimates of the mean vector and/or variance-covariance matrix, producing a small
distance from the outlier to the mean. The GBS family of distributions, including its BS
and BS-t members, has been extended to the multivariate case [24], its multivariate qualita-
tive robustness has been studied, and the mentioned masking effect has been evaluated
numerically by simulations in multivariate BS-t models [21].

Another aspect to be considered regarding multivariate outliers is the low-dimensional
visualization when employing usual scatterplots (2D). This type of visualization is not
reliable to identify high-dimensional outliers. There are several outlier identification
approaches looking at axis-parallel views or low-dimensional projections (often 2D) which
are assumed to indicate high-dimensional outliers [25–27]. Low-dimensional views are
risky, as discussed in [25] and shown by its Figure 9. The 2D scatterplots fail to reveal 3D
outliers, a situation which is even worse in higher dimensions. Usual 2D scatterplots can
be utilized to support the linear relationships between response variables and covariates
provided by correlation coefficients. However, one must be careful when analyzing the 2D
scatterplot matrix to detect high-dimensional outliers having in mind such a limitation.

Rieck and Nedelman [28] were the first ones in deriving BS regressions, often based
on the logarithmic BS (log-BS) distribution [29]. The bivariate version of the BS distribution
was proposed in [30], where ML and modified moment estimates of the corresponding
parameters were derived. Multivariate log-BS distributions and multivariate BS log–linear
regression models are presented in [10,12,31–33].

For the present work, one of the assumptions on the bivariate regression is that
its random errors are positive-skew distributed, which permits us to suitably model
atmospheric pollutant levels. The use of the BS distribution has been justified by the
proportionate-effect model demonstrating that this distribution has properties similar to
those corresponding to the log–normal distribution, which allows its employ in atmospheric
pollutant models [34]. For other applications of the BS distribution to environmental
phenomena, see [35–38].

The main objective of this study is to apply a bivariate regression model to predict,
simultaneously, the levels of PM2.5 and PM10 for the next day during the critical episodes
management (CEM) in Santiago, Chile. This predictive model is based on a bivariate GBS
regression, specifically using the bivariate BS and BS-t distributions for the model errors. A
stepwise algorithm considering the Bayesian information criterion (BIC) is employed as a
systematic variable selection tool to obtain a final bivariate regression model. In addition,
diagnostics analytics is conducted by goodness-of-fit (GOF) and global/local influence
techniques. GOF is used to determine which model offers a better fit to the atmospheric
contamination data, whereas the local influence technique is utilized to analyze the impact
of a perturbation on the overall estimation of model parameters [10,39]. Thus, model
precision to predict a critical episode of atmospheric contamination is determined. The
data were analyzed with the R software [40].

In Section 2, background on bivariate GBS and log-GBS distributions, bivariate log–
linear GBS models and diagnostic techniques is provided. In Section 3, the case study is
presented to motivate the application of the bivariate predictive model. Then, we introduce
an application where this model is used with real-world PM2.5 and PM10 data. Section 4
contains the conclusions of this investigation and ideas for future research from the present
applied study.
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2. Background
2.1. Bivariate GBS Distributions

Let V = (V1, V2)
> be a bivariate elliptic distributed random vector, with zero location

vector, variance-covariance matrix Σ = (σkl) of full rank and density generator g(2), which
is denoted as V ∼ E2(02×1, Σ, g(2)), where 02×1 is the two-dimensional null vector. In
addition, let T = (T1, T2)

> be a bivariate GBS distributed random vector, where α =
(α1, α2)

> and λ = (λ1, λ2)
> are the corresponding parameters, g(2) is the elliptic generator

and Σ is the variance-covariance matrix of V with diagonal components whose value is
one. Note that, for the GBS case, Σ is also the correlation matrix Ψ = (ρkl) of V . Then, we
use the notation T ∼ GBS2(α, λ, Ψ, g(2)) due to the relation between the GBS and elliptic
distributions. Thus, the density of T is given by

fT(t; α, λ, Ψ, g(2)) = fE2(A; Ψ, g(2)) a(t; α, λ),

for t = (t1, t2)
> ∈ R2

+, where A = A(t; α, λ) = (A1, A2)
>, with Aj = Aj(tj; αj, λj) =

(1/αj)((tj/λj)
1/2 − (λj/tj)

1/2), and a(t; α, λ) = ∏2
j=1 aj(tj; αj, λj) = ∏2

j=1 dAj(tj; αj, λj)/

dtj = ∏2
j=1((λj/tj)

1/2 + (λj/tj)
3/2)/(2αjλj), for j = 1, 2.

Let T = (T1, T2)
> ∼ GBS2(α, λ, Ψ, g(2)). Then, Y = (log(T1), log(T2))

> follows a
bivariate log-GBS distribution with shape vector α = (α1, α2)

>, location vector µ = E(Y) =
(E(Y1), E(Y2))

> = (log(λ1), log(λ2))
> ∈ R2, elliptic generator g(2) and Ψ ∈ R2×2 being

the correlation matrix of V . This is denoted by Y ∼ log-GBS2(α, µ, Ψ, g(2)). Hence, the
density of Y is expressed as

fY (y; α, µ, Ψ, g(2)) = fE2

(
B; Ψ, g(2)

)
b(y; α, µ), (1)

for y = (y1, y2)
> ∈ R2, where B = B(y; α, µ) = (B1, B2)

>, with Bj = Bj(tj; αj, µj) =

(2/αj) sinh((yj − µj)/2), and b(y; α, µ) = ∏2
j=1 bj(tj; αj, µj) = ∏2

j=1 dBj(tj; αj, µj)/dtj =

∏2
j=1(1/αj) cosh((yj − µj)/2), for j = 1, 2. From (1), if g(2) is the bivariate Gaussian (or t)

generator, then the bivariate log-BS (or log-BS-t) distribution is obtained and denoted by
Y ∼ log-BS2(α, µ, Ψ) (or Y ∼ log-BS-t2(α, µ, Ψ, ν)). Thus, the corresponding densities are
respectively defined as

fY (y; α, µ, Ψ) =
1

(2π)|Ψ|1/2 exp
(
− 1

2
B>Ψ−1B

) 2

∏
j=1

1
αj

cosh
(yj − µj

2

)
, y ∈ R2,

fY (y; α, µ, Ψ, ν) =
Γ( ν+2

2 )

Γ( ν
2 )(νπ)|Ψ|1/2

(
1 +

B>Ψ−1B
ν

)− (ν+2)
2 2

∏
j=1

1
αj

cosh
(yj − µj

2

)
, y ∈ R2.

See [12] for more details about bivariate log-GBS distributions. Random numbers
from bivariate log-BS and log-BS-t distributions may be generated with Algorithms 1 and 2,
respectively.

Algorithm 1 Generator of bivariate log-BS random vectors.

1: Perform a Cholesky decomposition of Ψ as Ψ = LL>, with L being a lower triangular
matrix with real and positive diagonal elements.

2: Obtain two standard normal random values independently, W = (W1, W2)
> say.

3: Compute Z = LW = (Z1, Z2)
>.

4: Generate Y whose elements are Yj = µj + 2 arcsin(αj Zj/2) for j = 1, 2.

5: Iterate Steps 1 to 4 until the vector of data is generated.



Mathematics 2021, 9, 645 5 of 24

Algorithm 2 Generator of bivariate log-BS-t random vectors.

1: Perform a Cholesky decomposition of Ψ as Ψ = LL>, with L being a lower triangular
matrix with real and positive diagonal elements.

2: Obtain two standard normal random values independently, W = (W1, W2)
> say.

3: Compute Z = LW = (Z1, Z2)
>.

4: Obtain random numbers from R ∼ Gamma(ν/2, ν/2).

5: Generate Y whose elements are Yj = µj + 2 arcsin(αj Zj/(2 R1/2)), for j = 1, 2.

6: Iterate Steps 1 to 5 until the vector of data is generated.

2.2. Bivariate GBS Log–Linear Models

Consider a bivariate GBS log–linear regression model stated as

Y = Xβ + E, (2)

with X = (xis) ∈ Rn×p being the model matrix of rank p, containing the values of p
covariates, and Y = (Yij) ∈ Rn×2 being the log-response matrix. Note that X and Y are
connected by a coefficient matrix β = (βsj) = (β1, β2) ∈ Rp×2 to be estimated, while
E = (εij) ∈ Rn×2 is the error matrix. In addition, in the model defined in (2), let Y>i , x>i
and ε>i be the ith rows of Y , X and E, respectively. Thus, we have that

Yi = µi + εi = β>xi + εi, i = 1, . . . , n, (3)

where ε1, . . . , εn are independent and identically distributed log-GBS2(α12×1, 02×1, Ψ, g(2)),
with 12×1 being a vector of ones.

Consider a sample Y = (Y1, . . . , Yn)> from a bivariate GBS log–linear regression
structure, with E(Yi) = β>xi, and y = (y1, . . . , yn)> being its respective observations.
Hence, with the notations ‘vec’ and ‘svec’ for vectorization and vectorization of a symmetric
matrix, respectively, the log-likelihood function for θ = (α, vec(β)>, svec(Ψ)>)> based on
(3) is expressed as

`(θ; y) =
n

∑
i=1

log( fE2(φi; Ψ, g(2))) +
n

∑
i=1

2

∑
j=1

log(ξij), (4)

where φi = (φi1, . . . , φi2)
>, with φij = B(yij; α, µij) = (2/α) sinh((yij − µij)/2) and ξij =

2 b(yij; α, µij) = (2/α) cosh((yij − µij)/2), with µij = β>j xi, for i = 1, . . . , n and j = 1, 2.

From (4), if g(2) is the bivariate Gaussian or t density generator, then the log-likelihood
functions for θ are respectively stated as

`(θ; y) = c1 −
n
2

log(|Ψ|)− 1
2

n

∑
i=1

φ>i Ψ−1φi +
n

∑
i=1

2

∑
j=1

log(ξij), (5)

`(θ; y) = c2 −
n
2

log(|Ψ|)−
(

ν + 2
2

) n

∑
i=1

log(ν + φ>i Ψ−1φi) +
n

∑
i=1

2

∑
j=1

log(ξij),

where c1 and c2 are constants independent of θ, and ξij, φi are defined in (4).
Multivariate log-GBS distributions are obtained from elliptic density generators, say

g(2). In this context, a result of interest is stated as

ζ(u) =
dg(2)(u)/du

g(2)(u)
, u > 0, (6)
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with dg(2)(u)/du being the derivative of g(2)(u) with respect to u. If the function g(2) is a
continuous and decreasing, it attains its maximum at ug, which is finite and positive. In
addition, if g(2) is a continuous and differentiable function, ug is the solution to the equation
ζ(u) + 1/u = 0, with ζ(u) being defined in (6). Note that the generator g(2) depends on a
further shape parameter, which is denoted by ν, and it permits us to control the kurtosis of
the distribution. Notice that ug equals to two for both Gaussian and t density generators.
Thus, for the Gaussian and t density generators, we have, respectively,

ζ(u) = −1
2

,
dζ(u)

du
= 0, ζ(u) = − ν + 2

2(ν + u)
,

dζ(u)
du

=
ν + 2

2(ν + u)2 .

Consider the log-likelihood functions for θ defined in (4)–(5) and Ψ = Ψ(ρ), where
ρ = svec(Ψ)> = (ρ1, . . . , ρl)

>, with l = m(m − 1)/2 for m = 2. By taking the deriva-
tive of `(θ; y) with respect to α, β, ρ, we obtain the gradient vector for θ stated by ˙̀ =
( ˙̀

α, ˙̀>
β , ˙̀>

ρ )
>, where

˙̀
α = − 2

α

n

∑
i=1

ζiMDi −
2
α

, ˙̀
β = −

n

∑
i=1

D(X)
(
ζiD(ξ i)Ψ

−1(ρ) +
1
2

D(ξ−1
i )
)
φi, ˙̀

ρ = (`ρ1 , . . . , ˙̀
ρl )
>, (7)

with ζi = ζ(MDi), ζ expressed in (6),

˙̀
ρk = −

n
2

tr
(

Ψ−1(ρ)
∂Ψ(ρ)

∂ρk

)
−

n

∑
i=1

ζiφ
>
i Ψ−1(ρ)

∂Ψ(ρ)

∂ρk
Ψ−1(ρ)φi, k = 1, . . . , l,

D(ξ i) = diag(ξi1, ξi2), ξij and φi defined in (4), D(ξ−1
i ) = diag(ξ−1

i1 , ξ−1
i2 ) and D(X) is a

block diagonal matrix with elements x>i . To determine the ML estimates of the model
parameters formulated in (2), we must equate the elements of the gradient vector stated
in (7) to zero and, in this manner, obtain a homogeneous system of equations. Note that,
for the log-BS-t distribution, as ν→ ∞, one has −2ζi approaching one, for all i = 1, . . . , n.
As this system cannot be solved analytically, the ML estimate θ̂ of θ must be computed
by using a non-linear optimization method to maximize the corresponding log-likelihood
function. We use an iterative procedure for the optimization; more details about this
procedure are provided below after the Hessian matrix is defined.

Observe that θ does not contain ν of the bivariate log-BS-t model, which must be
fixed to obtain qualitative robustness according to [13–16,21]. Thus, we can work with a
log-likelihood function profiled at ν. From [14], the influence function when using the t
model is bounded only if ν is fixed, providing qualitatively robust parameter estimates.
Nevertheless, the influence function is unbounded when ν is obtained with the ML estima-
tion method. This indicates the non-robustness from the qualitative point of view, which
should have a breakdown point equal to zero when analyzing its quantitative robustness,
but this type of robustness will be explored in future studies.

The observed information matrix is stated as I(θ) = − ῭ , with ῭ being the Hessian
matrix expressed as

῭ =
∂2`

∂θ∂θ>
=

 ῭
αα

῭
αβ

῭
αρ

῭
ββ

῭
βρ

῭
ρρ

, (8)
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with elements

῭
αα =

1
α2

n

∑
i=1

(
(6ζi − 2ζ ′iMDi + 2

)
,

῭
αβ =

2
α

n

∑
i=1

(ζi + ζ ′i D(X)D(ξ i)Ψ
−1(ρ)φi,

῭
αρ = ( ῭

αρ1 , . . . , ῭
αρl )
>,

῭
βρ = ( ῭

βρ1 , . . . , ῭
βρl

)>,
῭

ρρ = ( ῭
ρkρs) ∈ Rl×l ,

῭
ββ =

1
2

n

∑
i=1

D(X)D(ξ i)Ψ
−1(ρ)(ζ ′iφiφ

>
i Ψ−1(ρ) + ζi)D(ξ i)D(X>)

+
1
4

n

∑
i=1

D(X)(2ζiD(φi)D(Ψ−1(ρ)φi)− D(ξ−2
i )D(φ2

i ) + I2)D(X>),

where, for k = 1, . . . , l,

῭
αρk =

2
α

n

∑
i=1

(ζi + ζ ′iφ
>
i Ψ−1(ρ)

∂Ψ(ρ)

∂ρk
Ψ−1(ρ)φi,

῭
βρk

=
n

∑
i=1

D(X)D(ξ i)Ψ
−1(ρ)

(
ζi + ζ ′iφiφ

>
i Ψ−1(ρ)

)∂Ψ(ρ)

∂ρk
Ψ−1(ρ)φi,

῭
ρkρs = −n

2
tr
(
−Ψ−1(ρ)

∂Ψ(ρ)

∂ρk
Ψ−1(ρ)

∂Ψ(ρ)

∂ρs

)
+

n

∑
i=1

φ>i Ψ−1(ρ)Ψ(ρ)ρkρs Ψ(ρ)−1φi,

with Ψ(ρ)ρkρs being stated as

ζi
∂Ψ(ρ)

∂ρs
Ψ(ρ)−1 ∂Ψ(ρ)

∂ρk
+ ζi

∂Ψ(ρ)

∂ρk
Ψ−1(ρ)

∂Ψ(ρ)

∂ρs
+ ζ ′i

∂Ψ(ρ)

∂ρs
Ψ(ρ)−1φiφ

>
i Ψ(ρ)−1 ∂Ψ(ρ)

∂ρk
,

if k 6= s; whereas the case k = s conducts to

2ζi
∂Ψ(ρ)

∂ρk
Ψ(ρ)−1 ∂Ψ(ρ)

∂ρk
+ ζ ′i

∂Ψ(ρ)

∂ρk
Ψ(ρ)−1φiφ

>
i Ψ(ρ)−1 ∂Ψ(ρ)

∂ρk
,

with ζ ′i = dζ(MDi)/dMDi, D(φi) = diag(φi1, φi2), D(ξ−2
i ) = diag(ξ−2

i1 , ξ−2
i2 ) and

D(φ2
i ) = diag(φ2

i1, φ2
i2), whose elements are as given in (4).

In order to obtain the maximized log-likelihood function, we use the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method, also named the quantum-quantum BFGS optimization
algorithm, which is a good choice for solving non-linear systems of equations since, in
most cases, the BFGS algorithm may attain the solution more rapidly than other algo-
rithms. For more details on numerical analysis for statistics, including the BFGS algo-
rithm, see [41]. The BFGS algorithm is implemented in the R software by the function
optim. Note that the gradient vector and Hessian matrix are analytically computed from
the expressions defined in (7) and (8), respectively, and not numerically from the optim
function. In addition, warm start/initial value selection for the iterative procedure is
obtained from: (i) the ordinary least square estimate β̂(0) = (X>X)−1X>Y ; (ii) α̂(0) =

∑2
j=1(4 ∑n

i=1 sinh2((yij − µ̂
(0)
ij /2)/n)1/2/2, where µ̂

(0)
ij = β̂

(0)>
j xi, with β̂

(0)
j being computed

from (i); and (iii) Ψ̂(0) = D(Σ̂(0))−1/2Σ̂(0)D(Σ̂(0))−1/2, where D is a diagonal matrix and
Σ̂(0) = ∑n

i=1 φ̂
(0)
i (φ̂

(0)
i )>/n, with φ̂

(0)
i having elements φ̂

(0)
ij = (2/α̂(0)) sinh((yij− µ̂

(0)
ij )/2),

for i = 1, . . . , n and j = 1, 2.
Note that the estimators α̂, β̂ and ρ̂ are consistent, under regularity conditions, and

they follow asymptotically a bivariate normal model with means α, β and ρ, respectively,
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and covariance matrix Σθ̂ that can be obtained from the associated expected Fisher infor-
mation matrix. Therefore, as n→ ∞, we get

√
n (θ̂− θ)

D−→ Np∗(0p∗×1, Σθ̂ = J −1(θ)), (9)

with D−→meaning “convergence in distribution to”, p∗ = 2p + l + 1 and J (θ) = limn→∞
(1/n)I(θ), where I(θ) is the associated expected Fisher information matrix. Observe
that Î−1(θ) is a consistent estimator of the variance-covariance matrix of θ̂. Empirically,
the expected Fisher information matrix may be approximated by the observed Fisher
information matrix generated from (8), whereas the diagonal elements of its inverse matrix
may be used to approximate the standard errors (SE). Asymptotic inference for the bivariate
GBS log–linear regression parameters may be conducted by the asymptotic normality stated
in (9).

2.3. Diagnostics Analysis

Diagnostics are used to assess suitability and stability in the modeling. As mentioned,
diagnostics can be evaluated by GOF methods and global/local influence techniques.
Let Y ∼ log-GBS2(α, µ, Ψ, g(2)). Then, we have the property: B>(Y ; α, µ)Ψ−1B(Y ; α, µ) ∼
Gχ2(2, g(2)), that is, the generalized chi-squared distribution with two degrees of freedom;
see details in [12]. From this property of the bivariate log-GBS distribution, we get the MD
expressed as

MDi = φ>i Ψ−1φi, i = 1, . . . , n, (10)

being useful, as mentioned, to assess outliers in bivariate regression and to test goodness
of fit in these regressions. Observe that: (i) MDi ∼ χ2(2), that is, the MD has the central χ2

distribution with two degrees of freedom, if g(2) is the bivariate Gaussian density generator;
and (ii) MDi/2 ∼ F (2, ν); that is, it is related to the central F distribution with two degrees
of freedom in the numerator and ν in the denominator, when g(2) follows the bivariate t
density generator, for i = 1, . . . , n. Note from the gradient vectors defined in (7) that ζi
can be interpreted as a weight in relation to the MDi. Then, as this weight is inversely
proportional to MDi for the bivariate BS-t model, if case i has a large MD, it should have a
small weight in the ML estimate. Therefore, this procedure assigns less weight to outlying
observations in the sense of the MD defined in (10).

Consider `(θ) as the log-likelihood function for θ of the model stated in (2), named
the non-perturbed model, and w ∈ Rq as the perturbation vector in the model, for w ∈ Ω,
with Ω being a set of perturbations. Thus, `(θ|w) is the log-likelihood function of the
perturbed model, where θ̂w is the ML estimate of θ generated from `(θ|w). In addition,
consider w0 ∈ Ω ∈ Rq as a non-perturbation vector with w0 = 0>q×1 or w0 = 1>q×1, so that
`(θ) = `(θ|w0). Supposing that `(θ|w) is a twice continuously differentiable function in
a neighborhood of (θ̂, w0), the idea is to compare the ML estimates θ̂ and θ̂w by the local
influence method to assess how inference is affected by the associated perturbation. The
likelihood distance (LD) is expressed as

LD(w) = 2(`(θ̂)− `(θ̂w)), (11)

which is employed to evaluate the influence of w. A large LD(w) in (11) indicates that θ̂ and
θ̂w are considerably different in terms of the contours of the non-perturbed log-likelihood
function `(θ). In this paper, the local behavior of the influence plot a(w) = (w>, LD(w))>

around w0 is studied. The direction in which the LD locally changes most quickly is
determined; that is, the maximum curvature of the surface a(w). For LD(w) stated in (11),
the maximum curvature is defined by

Cmax = max
||d||=1

Cd, (12)
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with Cd = 2|d>Fd|, the matrix F ∈ Rn×n and d being the unit-length direction vector.
In order to obtain Cmax given in (12) and the corresponding direction vector dmax, we
must compute

F = −∆(θ̂, w0)
> ῭(θ̂)−1∆(θ̂, w0), (13)

with ∆(θ, w) ∈ Rp∗×n being a matrix partitioned accordingly for the perturbed model
generated from (2), called perturbation matrix, with elements given by

∆ij =
∂2`(θ|w)

∂θi∂wj
, i = 1, . . . , n, j = 1, . . . , p∗,

evaluated at θ = θ̂ and w = w0, where, as mentioned, p∗ = 2p + l + 1. Recall that
− ῭(θ̂) ∈ Rp∗×p∗ is the observed information matrix for the non-perturbed model. This
matrix is stated as I(θ) = − ῭ , with ῭ being the Hessian matrix given in (8). Thus, dmax is a
unit-length eigenvector related to the largest absolute eigenvalue Cmax expressed in (12). If
the absolute value of dmaxi is large, it indicates that case i is potentially influential.

In addition to dmaxi , another direction of interest is di = ein, which is associated with
the direction of case i, with ein ∈ Rn being a vector of zeros and a one at the ith position.
Therefore, the normal curvature is Ci(θ) = 2| fii|, for i = 1, . . . , n, with fii being the ith
diagonal element of F stated in (13), evaluated at θ = θ̂. Case i is potentially influential if
Ci(θ̂) > 2C(θ̂), for i = 1, . . . , n, where

C(θ̂) =
1
n

n

∑
i=1

Ci(θ̂). (14)

The diagnostic technique stated in (14) is named total local influence [42,43]. By
employing the formulation given in (2) and its perturbed version, it is possible to determine
normal curvatures for local influence. In order to do this, it is necessary to obtain the
observed information matrix − ῭(θ̂), compute the perturbation matrix ∆(θ̂, w0) and then
calculate the eigenvector related to the largest absolute eigenvalue of F defined in (13) as a
local influence indicator. The schemes to be employed in this research are: (i) case-weight
perturbation, (ii) correlation-matrix perturbation, (iii) response perturbation and (iv) a
continuous covariate perturbation; see details about these schemes in [10].

3. Case Study
3.1. Definition of the Problem and Established Methods

It is essential to study the relationship between the exposure of atmospheric pollutants
and their impact on health, especially in mega-cities where a considerable number of the
population is exposed, including vulnerable age groups. The effects of contamination
produced by coarse PM in Santiago were investigated in [4], concluding that, for every
50 µg/m3 increase in PM10 level, hospital visits caused by respiratory symptoms in children
under 2 years of age increased by 4–12% [44]. Most respiratory emergency visits in Santiago
were significantly associated with atmospheric contamination, specifically, with particles
emitted during the combustion of fixed or mobile sources, like vehicle traffic [45]. The
effects of atmospheric alerts by means of a multiple linear regression model were studied
in [44]. The authors determined that atmospheric quality regulations in Santiago helped
to decrease significantly the pollutant levels, where PM2.5 and PM10 reductions were
between 5–7% for the “alert” and 12% for “pre-emergency” categories.

Meteorological conditions are an uncontrollable key factor in the determination of
variability of atmospheric contamination. In some cases, it can surpass the influence of
some anthropogenic effects, such as those that originate from vehicle traffic [46]. The
effect of meteorological parameters on PM has been studied using different statistical
techniques, including multiple linear regression, generalized additive models, multivariate
adaptive regression splines and neural networks. Considering the high number of statistical
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models that can be used to fit atmospheric contamination, it is very common to observe
discrepancies among results [46].

In Chile, the primary air quality regulations for PM10 are established in Supreme Decree
number 59/1998 of the National Environmental Commission (CONAMA in Spanish) [47].

In 1999, CONAMA commissioned a study to improve the air quality predictive
methodology in the Metropolitan Region, which resulted in a new approach known as the
Cassmassi model, named after its creator Joseph Cassmassi [48,49]. This model was devel-
oped from air quality data measured by the automatic monitoring network of atmospheric
pollutants of the Metropolitan network (MACAM in Spanish) and altitude-based mete-
orological data from the central zone of the country, between 1-April and 17-September
during the years 1997 and 1998.

In 2000, CONAMA replaced its old model with a new Cassmassi model [50]. This
model predicts the maximum level of PM10 for the next day, in each station of the MACAM
network classified as a monitoring station with population representativeness for PM10.
The MACAM network has 11 monitoring stations, geographically located in certain zones
of the Metropolitan region of Chile, with their corresponding numbers on the map as
shown in Figure 1 [50] according to: (1) Independencia; (2) La Florida; (3) Las Condes; (4)
Santiago city; (5) Pudahuel; (6) Cerrillos; (7) El Bosque; (8) Cerro Navia; (9) Puente Alto;
(10) Talagante; and (11) Quilicura.

Figure 1. Air quality monitoring stations of the MACAM network in the metropolitan region of
Santiago, Chile.

In 2015, the Chilean Ministry of Environment presented a pollution predictive model
that anticipated days with bad air quality, known as the “Air quality predictive WRF-MMA
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model for fine breathable PM2.5”, where WRF denotes “weather research and forecasting”
and MMA denotes “Ministry of Environment” (Ministerio de Medio Ambiente de Chile,
in Spanish). This model estimates the maximum level of PM2.5 for the next day and it is
capable of predicting critical events of PM2.5 contamination three days in advance for nine
cities along central and southern Chile [51,52].

Currently in 2021, the Cassmassi and WRF-MMA models are used and evaluated by
environmental experts in Chile each day. These predictive models for PM levels are based
on a univariate multiple linear regression. Subsequently, the authority makes a decision
whether to issue an environmental alert, pre-emergency or emergency in the corresponding
zone. Note that the models used by the Ministry of Environment predict PM2.5 and PM10
separately. Given that these levels are highly correlated, they should be considered in only
one predictive model, such as proposed in the present investigation.

3.2. Data, Variables and Model

In this study, data collected from the Pudahuel monitoring station from MACAM
network were used during the year 2015 in the CEM period. The main reasons to work
with 2015 data and the Pudahuel station are: (i) 2015 is the last year with the most validated
measurements for each station; (ii) the Pudahuel station registered the highest levels of
PM2.5 during 2015; (iii) the Pudahuel station is the most influential monitoring station
in Santiago, informing administrative decisions based on predicted critical episodes [53];
and (iv) according to air quality regulation, if at least one monitoring station in Santiago
reports situations defined as pre-emergency or emergency for PM10 and/or PM2.5, the
authority will declare the condition of a critical episode in the city [54]. Hence, data from
the Pudahuel station are considered relevant for pollutant investigation in the Santiago
region. Meteorological and pollutant data for the Pudahuel station were obtained from
the National Air Quality Information System (SINCA in Spanish) website of the Chilean
Ministry of Environment, which provides air quality data for the entire country (http:
//sinca.mma.gob.cl, accessed on 22 January 2021). Some variables used in this study
were originally measured hourly and had to be transformed in order to represent daily
measurements for modeling purposes. In addition, a binary variable was used indicating
if the current day is a weekend/holiday or weekday. The covariates employed in our
predictive models are:

• average wind speed every 6 h of the present day between 0:00–5:59 (X1), 6:00–11:59
(X2), 12:00–17:59 (X3) and 18:00–23:59 (X4);

• average temperature every 6 h of the present day between 0:00–5:59 (X5),
6:00–11:59 (X6), 12:00–17:59 (X7) and 18:00–23:59 (X8);

• average relative humidity every 6 h of the present day between 0:00–5:59 (X9),
6:00–11:59 (X10), 12:00–17:59 (X11) and 18:00–23:59 (X12);

• average PM2.5 level every 6 h of the present day between 0:00–5:59 (X13), 6:00–11:59
(X14), 12:00–17:59 (X15) and 18:00–23:59 (X16);

• average PM10 level every 6 h of the present day between 0:00–5:59 (X17), 6:00–11:59
(X18), 12:00–17:59 (X19) and 18:00–23:59 (X20);

• average wind speed of the present day (X21);
• average temperature of the present day (X22);
• average relative humidity of the present day (X23);
• maximum PM2.5 level of the present day (X24);
• maximum PM10 level of the present day (X25);
• minimum temperature of the present day (X26);
• maximum temperature of the present day (X27);
• temperature range of the present day (X28);
• minimum temperature predict for the next day (X29);
• maximum temperature predict for next day (X30);
• predicted temperature range for the next day (X31);
• total precipitation of the present day (X32);

http://sinca.mma.gob.cl
http://sinca.mma.gob.cl
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• average atmospheric pressure of the present day (X33);
• day of the week of the present day (Monday, Tuesday, Wednesday, Thursday and

Friday versus Saturday, Sunday and holidays) (X34).

The response variables considered are:

• maximum PM2.5 level for the next day (T1);
• maximum PM10 level for the next day (T2).

The data that contain these covariates and the response variable are named “Chilean
PM” data.

The bivariate predictive model proposed in this study describes the relationship
among the response variables defined above, T1 and T2, that represent PM2.5 and PM10
maximum levels for the next day, respectively, and a set of p = 34 covariates, also defined
above. Then, the bivariate predictive model is expressed in matrix form as

Y = Xβ + E, (15)

with X = (xis) ∈ Rn×(p+1) being the model design matrix of rank p + 1 = 35, containing
the values of 34 covariates, and Y = (Yij) = (log(Tij)) ∈ Rn×2 being the log-response
matrix. In addition, X and Y are connected by a coefficient matrix β = (βsj) = (β1, β2) ∈
R35×2, and E = (εij) ∈ Rn×2 being the error matrix. Here, the rows of the error matrix (εi)
of the model defined in (15) are considered to be random variables whose behavior is char-
acterized by bivariate statistical distributions. In this study, models with errors following
bivariate log-GBS distributions are proposed, namely εi ∼ log-GBS2(α12×1, 02×1, Ψ, g(2)),
with Ψ = (ρrs) ∈ R2×2 being the correlation matrix and g(2) the bivariate density generator.

We estimate the parameters of the bivariate GBS regression models via the ML method,
which we have implemented in R by using the BFGS method through the optim function.
As mentioned, the gradient vector and the Hessian matrix are analytically computed.

For the model given in (15), the MD is as defined in (10). Furthermore, MDi ∼ χ2(2),
when g(2) is the bivariate normal density generator, and MDi/2 ∼ F (2, ν), if g(2) is the
bivariate t density generator, for i = 1, . . . , n. Substituting the ML estimator of θ in MDi(θ̂),
this measure possesses asymptotically the same distribution as MDi(θ). Note that, using
the Wilson–Hilferty (WH) approximation, it is possible to transform this distance so that
it follows a normal distribution. Consequently, it is possible to check for normality using
GOF techniques [10]. We show diagnostic graphical plots for total local influence (Ci) to
detect possible influential cases under the fitted models.

3.3. Data Exploratory Analysis

Next, the bivariate predictive model defined in (15), based on bivariate GBS distribu-
tions, is applied, including GOF techniques and diagnostics based on the MD using the R
software. The R codes and data used in this application are available upon request.

Table 1 reports a descriptive summary of the data, which includes minimum, median,
maximum, range, mean, standard deviation (SD), coefficient of variation (CV), coefficient
of skewness (CS) and coefficient of kurtosis (CK) for the response variables, during a
CEM period for the Pudahuel monitoring station in the year 2015. Although a CEM
period covers the days between 01-April-2015 to 31-August-2015, the first 7 days of April
were not considered for this study because no data for PM10 levels were registered in
the monitoring station. For this reason, the total number of data is n = 146 and not 153.
The primary air quality regulation for PM2.5 and PM10 is 50 µg/Nm3 and 150 µg/Nm3,
respectively, as 24-h level. According to Table 1, the primary regulations are exceeded for
both response variables.
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Table 1. Descriptive statistics for Chilean PM data using PM2.5 and PM10 24-h levels (in µg/Nm3)
recorded for the Pudahuel monitoring station during the CEM period. Santiago, Chile 2015.

Variable n Min Max Range Mean Median SD CV CS CK

T1 146 13 318 305 107.6 102.5 57.7 53.62% 1.07 1.47
T2 146 22 522 500 208.4 207.5 97.5 46.79% 0.5 0.25

Continuing with the exploratory analysis of the data, in Figure 2, marginal asymmetric
distributions for response variables T1 and T2 are observed, justifying the need to model
these levels with positive-skew distributions as proposed in this study. In addition, we
calculate correlations between the response variables and all quantitative covariates, with
the binary variable X34 being not included in the correlation matrix. First, we remove the
covariates X22, X26, X27 and X28 that are highly correlated between them. This is supported
by the variance inflation factor (VIF) greater than 10 in marginal models causing possible
collinearity problems. Such VIF values are 49.9, 8356.2, 20,551.9 and 18,657.9, respectively;
see details about the VIF in [17] (p. 118) and [55]. Second, based on the low correlation
between some covariates and the response variables, we determine that only the following
covariates are part of the bivariate predictive model: X21, X23, X24, X31, X32, X33 and X34.
In Figure 3, a scatterplot matrix of these covariates (except the binary variable X34) and the
response variables is shown. This figure is conformed by scatterplots for the variables in
study and their corresponding correlation coefficient. From this figure, a high correlation
can be identified between T1 and T2, justifying the use of a bivariate model. Note that we
employ these 2D scatterplots to support the linear relationships between response variables
and covariates provided by correlation coefficients. However, we do not consider them to
detect multivariate outliers due to limitations earlier mentioned.
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3.4. Parameter Estimation and Model Selection

In view of the exploratory analysis described previously, bivariate log-GBS distribu-
tions seem adequate to obtain the predictive model to be used in data-driven decision
making when monitoring environmental pollution in Santiago. Then, the predictive bivari-
ate regression model to be applied is given by

Yi = β>xi + εi, i = 1, . . . , 146,
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where Y = (Yij) = (log(Tij)) ∈ R146×2 is the log-response matrix and εi = (εi1, εi2)
> ∼

log-GBS2(α12×1, 02×1, Ψ2×2, g(2)). As mentioned, the parameters of the bivariate BS and
BS-t models are estimated by the ML method, which has been implemented in the R
software. A stepwise algorithm based on the BIC is used for variable selection within the
set {X21, X23, X24, X31, X32, X33, X34}. The covariates were initially ordered according to
the correlation with the response variables. Table 2 provides the results obtained by this
variable selection algorithm for the bivariate BS regression model.

T1

3
.0

4
.0

5
.0

6
.0

0.856

−0.638

4
0

6
0

8
0

−0.316

0.611

5
1
0

1
5

2
0

0.467

−0.300

2.5 3.0 3.5 4.0 4.5 5.0 5.5

9
4
5

9
5
0

9
5
5

9
6
0

0.404

3.0 3.5 4.0 4.5 5.0 5.5 6.0

T2

−0.585

−0.439

0.436

0.555

−0.423

0.317

X21

0.207

−0.532

−0.356

0.325

0.5 1.0 1.5 2.0

−0.331

40 50 60 70 80 90

X23

−0.488

−0.359

0.262

0.222

X24

0.268

−0.227

50 100 150 200 250 300

0.072

5 10 15 20

X31

−0.240

0.124

X32

0 10 20 30 40

−0.364

945 950 955 960

2
.5

3
.5

4
.5

5
.5

0
.5

1
.0

1
.5

2
.0

5
0

1
5
0

2
5
0

0
1
0

2
0

3
0

4
0

X33

Figure 3. Scatterplot matrix for the listed covariates and response variables with Chilean PM data.

Table 2. Results of the stepwise algorithm for the bivariate BS regression model and its corresponding
BIC and log-likelihood values with Chilean PM data.

Covariates BIC Log-Likelihood

X21 254.2528 −122.1428
X21, X24 230.1053 −107.5772
X21, X24, X31 195.7838 −87.9247
X21, X24, X31, X23 169.1232 −72.1026
X21, X24, X31, X23, X32 152.6680 −61.3832
X21, X24, X31, X23, X32, X33 144.6909 −54.9028
X21, X24, X31, X23, X32, X33, X34 138.6046 −49.3679
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Next, parameter estimates (that is, the value that maximizes the log-likelihood func-
tion), estimated asymptotic SEs and p-values of the corresponding t-tests are obtained for
each of the parameters of the bivariate BS regression model, where non-significant covari-
ates were excluded at a 5% significance level. Its results are reported in Table 3, from where
it is possible to note that the coefficients β23 and β32 should be removed when predicting
T1; however, both of them should be used when predicting T2. Further, coefficient β24
should be removed when predicting T2, but considered when predicting T1.

Table 3. ML estimate for listed parameter and corresponding estimated SE, p-value and maximized
log-likelihood value for the BS model with Chilean PM data.

Parameter Estimate SE p-Value

ρ 0.7668 0.0150 <0.001
β0,1 −52.9581 9.7721 <0.001
β0,2 −32.1547 9.7471 0.0009
β21,1 −0.3582 0.0946 0.0001
β21,2 −0.4312 0.0944 <0.001
β23,1 −0.0028 0.0026 0.2928
β23,2 −0.0115 0.0026 <0.001
β24,1 0.0040 0.0006 <0.001
β24,2 0.0006 0.0005 0.2734
β31,1 0.0292 0.0064 <0.001
β31,2 0.0375 0.0064 <0.001
β32,1 0.0047 0.0057 0.4084
β32,2 −0.0135 0.0057 0.0184
β33,1 0.0598 0.0102 <0.001
β33,2 0.0397 0.0102 0.0001
β34,1 −0.2074 0.0560 0.0002
β34,2 −0.2148 0.0556 0.0001

α 0.3077 0.0110 <0.001

Log-likelihood −49.368 - -

As mentioned, the MD can be considered to evaluate whether the proposed distri-
butional assumption for the multivariate models is appropriate and also as a measure
of global influence to identify multivariate outliers. In Figure 4a, an empirical probabil-
ity versus theoretical probability (PP) plot is presented, with Kolmogorov-Smirnov (KS)
acceptance regions at 5% for transformed MDs. The KS test, although not particularly
sensitive, but very competitive with other tests, is the only test that can be linked to a
graphical tool as the PP plot. A graphical tool is always more desirable than a test due
to its easier interpretation. However, if the graphical GOF tool can be accompanied by
a p-value associated with a GOF test, it is more informative. This is the reason why we
have used both GOF tools [56]. From the PP plot, the BS model does not have a good fit,
which is corroborated by a p-value of 0.001 of the KS test associated with this PP plot. From
Figure 4b, observe that cases {64, 95, 119} appear as possible multivariate outliers in
the BS model. These cases correspond to 10-June, 11-July, and 04-August of the year
2015, respectively.

Next, we adopt a bivariate BS-t regression model to describe the data and apply the
same variable selection algorithm as with the bivariate BS regression model, within the
set {X21,X23, X24, X31, X32, X33, X34}. An important point to consider under a t model is
whether the degrees of freedom, ν, are estimated or not. Various authors [10,13–16,21] have
worked on this issue and reported problems when estimating ν due to unboundedness and
local maximum in the likelihood function. Thus, in order to overcome this difficulty, the
parameter ν can be previously fixed or, otherwise, information for ν from the data can be
obtained [14]. Then, to estimate the parameters of the bivariate BS-t regression model, we
use the profiled log-likelihood function with fixed ν from 1 to 20. This procedure is known
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as the non-failing method and applied in each of the iterations of the stepwise algorithm,
starting the procedure with ν = 4 and attaining an optimum at ν = 3 with the lowest BIC
(113.1882); see Figure 5a. Table 4 provides the results obtained by this variable selection
algorithm for the bivariate BS-t regression model.
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Figure 4. PP plot with KS acceptance bands at 5% (a) and index plot for transformed Mahalanobis distance (MD) (b) using
the BS model with Chilean PM data from the Pudahuel monitoring station, in Santiago, Chile, during 2015.
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Figure 5. Profiled log-likelihood function with fixed ν from ν = 1, . . . , 20 (a), PP plot with KS acceptance bands at 5% (b),
and index plot for transformed MD (c), using the BS-t model and Chilean PM data.

Table 4. Results of the stepwise algorithm for the bivariate BS-t regression model and its correspond-
ing BIC and log-likelihood values with Chilean PM data.

Covariates BIC Log-Likelihood

X21 254.8505 −122.4417
X21, X24 228.6716 −106.8604
X21, X24, X31 150.1183 −65.0919
X21, X24, X31, X23 124.8974 −49.9897
X21, X24, X25, X31, X23, X32 124.7530 −44.9339
X21, X24, X31, X23, X32, X33 136.3542 −50.7445
X21, X24, X31, X23, X32, X34 113.1882 −39.1515
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Next, parameter estimates, estimated asymptotic SEs and p-values of the correspond-
ing t-tests are obtained for each of the parameters of the bivariate BS-t regression model,
where non-significant covariates were excluded at a 5% significance level, in this case,
X32. We use this level to obtain the BS-t model and its results are reported in Table 5. The
BS-t model is proposed as optimal parsimonious, where the estimated ρ is statistically
significant and the coefficient β23 must be discarded in the prediction of T1, but considered
for T2.

Table 5. ML estimate for the listed parameter and corresponding estimated SE, p-value and maxi-
mized log-likelihood value for the BS-t model and ν = 3 using Chilean PM data.

Parameter Estimate SE p-Value

ρ 0.7594 0.0167 <0.001
β0,1 4.2533 0.2221 <0.001
β0,2 5.9471 0.2244 <0.001
β21,1 −0.6105 0.0853 <0.001
β21,2 −0.6958 0.0854 <0.001
β23,1 0.0019 0.0020 0.3445
β23,2 −0.0079 0.0020 <0.001
β24,1 0.0046 0.0005 <0.001
β24,2 0.0011 0.0005 0.0304
β31,1 0.0220 0.0052 <0.001
β31,2 0.0303 0.0052 <0.001
β34,1 −0.1193 0.0492 0.0153
β34,2 −0.1767 0.0488 <0.001

α 0.2188 0.0083 <0.001

Log-likelihood −45.976 - -

Figure 5b presents a PP plot with KS acceptance regions at 5% for transformed MDs.
The plot shows that the bivariate BS-t model has a better fit than the BS model, with p-value
of 0.8502 of the KS test. In addition, we fit the bivariate normal regression for comparison
with an established model and summarize the BIC values of this model and of the bivariate
BS and BS-t regression models in Table 6. Marginal normal regression models are less
suitable than the bivariate normal regression model, as expected, with their BIC values
omitted here. From Table 6 and Figure 5a, we confirm that the BS-t regression with ν = 3
degrees of freedom and the indicated covariates is the most adequate model for describing
the Chilean PM data.

Table 6. BIC and log-likelihood values with Chilean PM data for the indicated model.

Model Covariates BIC Log-Likelihood

Bivariate BS-t X21, X23, X24, X31, X34 121.8535 −45.97593
Bivariate BS X21, X23, X24, X31, X32, X33, X34 138.6046 −49.36789
Bivariate normal X21, X23, X24, X31, X34 150.1715 −60.13494

3.5. Diagnostic Analytics

From Figure 5c, we can identify that cases {64, 95} appear as possible multivariate
outliers in the BS-t model. These cases correspond to 10-June-2015 and 11-July-2015,
respectively. As it is well known, outliers can or cannot be potentially influential cases, so
that we now apply the local influence method for their evaluation.

In order to identify possible influential cases under the fitted model, diagnostic
plots are presented for total local influence (Ci). The schemes to be employed in this
research are: (i) case-weight perturbation, (ii) correlation-matrix perturbation, (iii) re-
sponse perturbation and (iv) a continuous covariate perturbation; see details about these
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schemes in [10]. Figure 6a–d present index plots for Ci(θ), Ci(α), Ci(β) and Ci(ρ) un-
der the case-weight perturbation scheme. For this scheme, we can distinguish that case
{96} appears as high potentially influential on θ̂ in Figure 6a. In addition, this same case
has a high potential influence only on β̂ in Figure 6c. Furthermore, in Figure 6b and in
Figure 6d, there is no influence of this case on α̂ and ρ̂, respectively. Figure 6e–h show
index plots for Ci(θ), Ci(α), Ci(β) and Ci(ρ) under the correlation matrix perturbation
scheme. These figures indicate that under this perturbation scheme no cases stand out as
high potentially influential considering the BS-t model. Figure 6i–l present index plots for
Ci(θ), Ci(α), Ci(β) and Ci(ρ) under the response variable perturbation scheme. From these
figures, one can distinguish that case 74 has a high influence on PM10, when applying the
BS-t regression model. Furthermore, case 74 also has some influence on β̂ for PM10, but
not for α̂ and ρ̂. Figures 6m–p present index plots for Ci(θ), Ci(α), Ci(β) and Ci(ρ) under
the covariate perturbation scheme. From these figures, we can observe that no cases appear
as potentially influential cases in the bivariate BS-t model.

3.6. Analysis of Results

In summary, cases {64, 74, 95, 96} are identified as potentially influential data under
the different perturbation schemes used, two of which cases {64, 95} are indicated also as
possible outliers. These cases correspond to 10-June, 20-June, 11-July and 12-July of the year
2015, respectively. Case 64 (10-June-2015) was the day prior to the second highest PM2.5
level during the year, whereas case 74 (20-June-2015) was the day with the highest recorded
level for PM2.5 and the second highest for PM10. Note that cases 95 and 96 (11-July-2015
and 12-July-2015) are 2 of 5 days with the largest measured rainfall (total precipitation) for
the entire year, which might have also affected the low levels of PM2.5 and PM10 observed
for case 96. Under these conditions, a much larger decrease was expected for PM levels
than the predicted levels. Meteorological variables might affect the response variables in
an indirect manner, as observed in the perturbation schemes.

Next, the prediction capacity of the bivariate BS-t regression model with respect to the
primary quality guidelines for PM2.5 and PM10 is analyzed, based on which the degree of
precision to detect critical episodes was determined. Table 7 provides the primary quality
guidelines for PM2.5 and PM10 levels for 24 h.

Table 7. Primary quality guidelines for PM2.5 and PM10 levels in 24 h [1,47].

PM2.5 Level PM10 Level Indication

[0, 50) [0, 150) good
[50, 80) [150, 195) regular
[80, 110) [195, 240) alert
[110, 170) [240, 330) pre-emergency
>170 >330 emergency

The results for the corresponding predictive capacity of the BS-t model for the year
2015 are reported next. First, once again, observed versus predicted data during the 2015
CEM period for PM2.5 are analyzed. According to Figure 7, the model is capable of
following the overall trend of the observed data. Nevertheless, just as for bivariate BS
model, when an abrupt increase in the pollutant level is present from one day to another, it
is not capable of predicting a value similar to the observed data. Note that cases presenting
extreme residuals of low frequency in the histogram are those where large differences
exist between the observed and predicted data. Table 8 contains the categorization of the
observed and predicted measurements according to the primary air quality regulations of
PM2.5 levels for the year 2015. Most underestimated cases occurs when the observed data
are categorized as emergency.



Mathematics 2021, 9, 645 19 of 24

0 50 100 150

0
1

2
3

4

Index

C
i

96

(a)

0 50 100 150

0
1

2
3

4

Index

C
i

(b)

0 50 100 150

0
1

2
3

4

Index

C
i

96

(c)

0 50 100 150

0
1

2
3

4

Index

C
i

(d)

0 50 100 150

0
.
0

0
.
5

1
.
0

1
.
5

2
.
0

Index

C
i

(e)

0 50 100 150

0
.
0

0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

Index

C
i

(f)

0 50 100 150

0
.
0

0
.
5

1
.
0

1
.
5

2
.
0

Index

C
i

(g)

0 50 100 150

0
.
0

0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

Index

C
i

(h)

0 50 100 150 200 250 300

0
5

0
1

0
0

1
5

0
2

0
0

Index

C
i

74,2

(i)

0 50 100 150 200 250 300

0
.
0

0
.
5

1
.
0

1
.
5

2
.
0

Index

C
i

(j)

0 50 100 150 200 250 300

0
5

0
1

0
0

1
5

0
2

0
0

Index

C
i

74,2

(k)

0 50 100 150 200 250 300

0
.
0

0
.
5

1
.
0

1
.
5

2
.
0

Index

C
i

(l)

0 50 100 150

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0
3

0
0

0
0

Index

C
i

(m)

0 50 100 150

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

Index

C
i

(n)

0 50 100 150

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0
3

0
0

0
0

Index

C
i

(o)

0 50 100 150

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

Index

C
i

(p)

Figure 6. Total local influence index plots of the BS-t model for θ̂ (a,e,i,m), α̂ (b,f,j,n), β̂ (c,g,k,o) and ρ̂ (d,h,l,p) in (first row)
case-weight perturbation; (second row) correlation matrix perturbation; (third row) response perturbation; and (fourth row)
covariate perturbation, with Chilean PM data.
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Figure 7. Predicted versus observed PM2.5 levels (a) and residual histogram (b) for the BS-t model with Chilean PM data.

Table 8. Categorization of observed and predicted PM2.5 levels according to air quality regulations during the CEM period
for the Pudahuel monitoring station in Santiago, Chile, during 2015.

aaaaaaaaaaaa

Prediction
Category

Observed
Category

Regular Alert Pre-Emergency Emergency

n % n % n % n % Total

Regular 44 81.5 9 16.7 1 1.9 0 0.0 54
Alert 4 12.5 16 50.0 12 37.5 0 0.0 32

Pre-emergency 4 9.8 14 34.1 21 51.2 2 4.9 41
Emergency 2 10.5 2 10.5 8 42.1 7 36.8 19

Total 54 37.0 41 28.1 42 28.8 9 6.2 146

Just as for the PM2.5 level, a general underestimation of the PM10 level is noted.
According to Figure 8, for extremely high measurements, a value similar to the observed
data cannot be predicted by the model. Note that cases presenting extreme residuals of low
frequency in the histogram are those where medium differences exist between the observed
and predicted data. Table 9 contains the categorization of the observed and predicted
measurements according to the primary air quality regulations for PM10 levels for the year
2015. Most of the underestimated cases occur when the observed data are categorized as
“pre-emergency” or “emergency”.

Table 9. Categorization of observed and predicted PM10 levels according to air quality regulations during the CEM period
for the Pudahuel monitoring station, in Santiago, Chile, during 2015.

aaaaaaaaaaaa

Prediction
Category

Observed
Category

Regular Alert Pre-Emergency Emergency

n % n % n % n % Total

Regular 55 87.3 8 12.7 0 0.0 0 0.0 63
Alert 13 36.1 23 63.9 0 0.0 0 0.0 36

Pre-emergency 4 12.1 27 81.8 2 6.1 0 0.0 33
Emergency 4 28.6 9 64.3 1 7.1 0 0.0 14

Total 76 52.1 67 45.9 3 2.1 0 0.0 146
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Figure 8. Predicted versus observed PM10 levels (a) and residual histogram (b) for the BS-t model with Chilean PM data.

4. Conclusions and Future Investigation

In this study, bivariate Birnbaum-Saunders log-linear models were fitted to predict the
maximum PM2.5 and PM10 levels during critical episodes management in Santiago, Chile.
The bivariate Birnbaum-Saunders-t model showed a better fit to the data and, consequently,
more precise and robust results were obtained with respect to the Birnbaum-Saunders
model. The proportion of accurate predictions about the corresponding observed categories,
according to primary air quality regulations, was also better for the Birnbaum-Saunders-t
model than for the Birnbaum-Saunders model, in both PM2.5 and PM10 levels. For the
bivariate Birnbaum-Saunders model, statistically significant meteorological variables, at
a 5% significance level, were: maximum level of PM2.5 of the present day, average wind
speed of the present day, predicted temperature range for the next day, average relative
humidity of the present day, total precipitation of the present day, average atmospheric
pressure of the present day and the binary variable weekend/holiday. For the bivariate
BS-t model, the statistically significant covariates, at a 5% significance level, were the
same as those for the Birnbaum-Saunders model, except for total precipitation of the
present day and average atmospheric pressure of the present day. The stepwise algorithm
was used as a systematic variable selection tool to obtain the bivariate regression model
based on the Bayesian information criterion. The Mahalanobis distance was employed
to evaluate if the distributional assumption was appropriate for each model and also
as global influence method to detect bivariate outliers. The local influence technique,
under perturbation schemes of case-weight, correlation matrix, response variable and a
continuous covariate, was utilized to identify possible influential cases under the fitted
model. For the Birnbaum-Saunders-t model, predictions were superior for the maximum
PM2.5 level than for the maximum PM10 level. Considering the categorization of PM2.5
estimates using the Birnbaum-Saunders-t model, it is worth mentioning that some alert
and pre-emergency indications were overestimated in more relevant categories according
to primary air quality regulations for PM2.5 levels. The regular, alert, pre-emergency
and emergency categories obtained an 81.5%, 50.0%, 51.2% and 36.8% of assertiveness,
respectively; see Table 8. For PM10 estimates using the Birnbaum-Saunders-t model, an
87.3% and 63.9% assertiveness were obtained for the regular and alert categories, while
categorizations for pre-emergency and emergency were underestimated mainly under
alert; see Table 8. Future research, which arose from the present applied investigation, is
proposed as follows:

(i) Incorporation in the modeling of temporal, spatial, functional and quantile regression
structures, as well as measurement errors, and partial least squares, are suitable to be
studied and can improve the predictive capability of the model [57–63].

(ii) Traditional robust estimation methods as well as the theoretical study of quantitative
robustness are also of interest [64].
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(iii) Other applications in the context of multivariate methods are in cluster analysis
and principal component analysis, particularly when using principal components to
remove the collinearity among covariates [65].

(iv) An interesting field of application is in the statistical learning and neural networks.

The methodology used in this applied investigation provides options to explore other
theoretical and numerical topics related, which are in progress and we hope to report them
in other articles.
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