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Abstract: Data mining is employed to extract useful information and to detect patterns from
often large data sets, closely related to knowledge discovery in databases and data science. In
this investigation, we formulate models based on machine learning algorithms to extract relevant
information predicting student retention at various levels, using higher education data and specifying
the relevant variables involved in the modeling. Then, we utilize this information to help the process
of knowledge discovery. We predict student retention at each of three levels during their first, second,
and third years of study, obtaining models with an accuracy that exceeds 80% in all scenarios. These
models allow us to adequately predict the level when dropout occurs. Among the machine learning
algorithms used in this work are: decision trees, k-nearest neighbors, logistic regression, naive Bayes,
random forest, and support vector machines, of which the random forest technique performs the
best. We detect that secondary educational score and the community poverty index are important
predictive variables, which have not been previously reported in educational studies of this type. The
dropout assessment at various levels reported here is valid for higher education institutions around
the world with similar conditions to the Chilean case, where dropout rates affect the efficiency of such
institutions. Having the ability to predict dropout based on student’s data enables these institutions
to take preventative measures, avoiding the dropouts. In the case study, balancing the majority and
minority classes improves the performance of the algorithms.

Keywords: data analytics; databases; data science; Friedman test; socioeconomic index; university
dropout

1. Symbology, Introduction, and Bibliographical Review

In this section, abbreviations, acronyms, notations, and symbols used in our work
are defined in Table 1. In addition, we provide here the introduction, the bibliographical
review on the topic about related works, and an overview of the models utilized together
with the description of the sections considered in this paper.
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1.1. Abbreviations, Acronyms, Notations, and Symbols

Next, Table 1 presents the symbology considered in this paper to facilitate its reading.

Table 1. Abbreviations, acronyms, notations, and symbols employed in the present document.

Abbreviations/Acronyms Notations/Symbols

ANN artificial neural networks ∼ distributed as
CLU clustering k number of nearest neighbors
CP community poverty index n sample size
DT decision trees l = β0 + β1x log-odd
EDM educational data mining o = bβ0+β1x odd
EM ensemble models β0, β1 regression coefficients

FN false negative X independent variable or
feature

FP false positive Y dependent variable or
response

HE higher education p = P(Y = 1) probability function of LR
IG information gain =

exp(β0+β1x)
exp(β0+β1x)+1

KNN k-nearest neighbors = 1
1+exp(−β0−β1x)

LR logistic regression P(Y = c | X = x) probability Y given X
ML machine learning P(Y=c)P(X=x|Y=c)

P(X=x)
Bayes conditional probability

NB naive Bayes X = (X1, . . . , Xp)
vector of independent
variables

NEM secondary educational score (x1, Y1), . . . , (xn, Yn) instances
(notas enseñanza media) c number of classes

PSU university selection test ‖x‖ norm of a point x
(prueba selección
universitaria) s number of folds in

cross-validation

RAM random access memory w normal vector to the
hyperplane

RF random forest TP/(TP + FP) precision
SVM support vector machines κ = (pa − pe)/(1− pe) κ-statistic

TF true negative pa
% of agreement
classifier/ground truth

TP true positive pe agreement chance
UCM Catholic University of Maule Q = 12n

c(c+1)

c
∑

j=1

(
r̄·j − c+1

2
)2 Friedman statistic

(Universidad Católica del
Maule) {xij}n×c n× c data matrix

SMOTE synthetic minority {rij}n×c n× c rank matrix

over-sampling technique r̄·j = 1
n

n
∑

i=1
rij rank average of column j

KDD knowledge discovery P
(
χ2

c ≥ Q
)

p-value
in databases χ2

c chi-squared distribution
with c degrees of freedom

1.2. Introduction

Data mining integrates modeling and data analytics. Although it is based on several
disciplines, data mining differs from them in its orientation towards the end rather than
towards the means to achieve it, feeding on all of these disciplines to extract patterns,
describe trends, and predict behaviors, taking advantage of the information obtained from
the data [1].

Data mining is only one stage, but the most important, in the process of knowledge
discovery in databases (KDD). Note that KDD is defined as a non-trivial process to identify
valid, novel, potentially useful, and ultimately understandable patterns in often large
data sets, and to extract relevant information from available databases [2–4]; see more
details about the KDD process in Section 2. This process consists of several phases and
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incorporates database techniques, machine learning (ML), statistics, artificial intelligence,
and decision-making systems.

ML is the study of computer algorithms that improve automatically through expe-
rience and by the use of data (learning) [1]. Note that ML is seen as a part of artificial
intelligence. ML and data mining use the same algorithms, but their process and usefulness
are different. These algorithms can be supervised or unsupervised depending on whether
we know the outcome or not, respectively. The main difference between data mining and
ML is that, without human participation, data mining cannot work, but in ML, human
effort is involved only at the moment when the algorithm is defined. Unlike data mining,
in ML, the machine must automatically learn the parameters of the models from the data.
Then, ML uses self-learning algorithms to improve its performance. In summary, ML is
oriented towards the result, while data mining is oriented towards knowledge discovery.
Some algorithmic techniques used in data mining and ML correspond to supervised tech-
niques: classification and regression, decision trees (DT), ensemble models (EM), k-nearest
neighbors (KNN), logistic regression (LR), naive Bayes (NB), random forest (RF), and
support vector machines (SVM); or to unsupervised techniques: artificial neural networks
(ANN), clustering (CLU), and correlation analysis [5,6]. Note that, in the case of ANN, they
are also very popular supervised methods in data mining and ML.

1.3. Related Works

Around the world, student retention is an essential aspect of higher education (HE)
institutions and involves university rankings, the reputation of the institution, and its
financial wellbeing [7–11]. Thus, at-risk students should be identified prior to beginning
their studies. Especially in developing countries, student retention has taken on much
importance.

According to the official information of the Chilean government, the HE under-
graduate enrollment increased from 165,000 students in 1980 to more than 1.2 million in
2018 [12,13]. This increased enrollment has enabled more students access to HE, particu-
larly for those who are the first in their family to achieve a university education. Then, such
an achievement involves an additional challenge for the HE institutions related to maintain-
ing this new group of students in its initial study program, whose maintenance has become
one of the priorities for the Chilean Ministry of Education [14]. However, data regarding
the HE activities that involve student performance, particularly when associated with
student’s background, is limited or not always publicly available. Student’s variables such
as socio-economic and cultural status, family values, individual characteristics, and pre-
college academic experience have a relevant influence on the student’s dropout [15,16]. In
addition, there may be a lack of vocational orientation and poor academic performance [17].
All these variables, inherent to students, remain as important elements of the present study
according to the information reported in [14].

Note that dropout rates are not equivalent among educational variables associated
with units and areas. For example, the dropout rates for health and engineering careers in
Chile are 11% and 44%, respectively. Thus, it is also necessary to introduce these educational
variables along with student’s variables. Based on information from the Chilean Ministry
of Education, more than 50% of the students who enroll in HE institutions do not complete
the program in which they were initially enrolled. This results in high resource losses for
the government and institutions, as well as decreased opportunities for students and their
families. These opportunities, of course, can result in problems of low national productivity,
as well as other negative effects. Therefore, both governments and HE institutions should
be concerned about these problems due to such a loss of resources [14]. Similar statistics can
be found in other countries as well. Thus, in Chile, it is important to formulate a predictive
model for identifying what type of students tend to drop out of the HE institutions and
the level of study at which dropout occurs. This identification can help the HE institutions
to focus on resources to improve student’s conditions and implement actions to enhance
retention rates.
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The dropout problem remains not only in Chile, but also in other countries, which
is increased due to the continuous growth of student enrollment in HE institutions. This
problem directly affects graduation rates and a country’s growth, in addition to hurting
HE institutions around the world, which results in the need to state new and better student
retention solutions for these institutions. Note that data mining and ML techniques can be
a suitable tool to formulate predictive models for student retention at various levels of HE
institutions. These models are necessary and relevant.

Educational data mining (EDM) is an emerging scientific area concerned with applying
data mining techniques to explore large-scale data from schools and universities in order
to understand the context in which learning and other educational issues occur [18–20].
Applications of EDM were presented in [19] and developed between 1995 and 2005, in
traditional educational institutions, which was complemented with a more recent study
by the same authors [21]. These studies described the following eleven different areas
of EDM application: (i) analysis and visualization of data, (ii) construction of didactic
material, (iii) development of conceptual maps, (iv) detection of undesirable student
behaviors, (v) feedback for support instructors, (vi) grouping of students, (vii) planning
and programming, (viii) prediction of student performance, (ix) recommendations for
students, (x) modeling of students, and (xi) analysis of social networks.

EDM is the application of data mining techniques to data from educational institu-
tions to answer questions and to solve problems [22], discovering information hidden in
these data. EDM can be applied to model student retention based on data from different
educational institutions [15,21]. According to [20], EDM techniques are appropriate to
identify students who may have problems or exhibit unusual behavior, such as academic
failure, cheating, dropout, erroneous actions, low motivation, misuse, and playing games.

Various ML algorithms have been used to detect these students early in order to
provide them with sufficient time and adequate support to prevent dropout. Different
variables were considered in [7,8], such as academic, demographic, and financial factors,
to detect dropout using and evaluating several ML algorithms, including ANN, DT, LR,
and SVM. EDM techniques to predict attrition among electrical engineering students after
they completed their first semester in The Netherlands were applied in [23]. Such an
application employed DT, LR, and NB, with demographic, pre-college, and university
academic characteristics being included as variables. EDM has also been used to predict
student dropout of e-learning courses [24], comparing the performance of three different
ML algorithms in terms of overall accuracy, precision, and sensitivity. A wide range of
ML algorithms were contrasted in [25], developing a variable selection procedure for
academic, demographic, and financial characteristics, with DT and NB presenting the best
performance.

Several other techniques have been reported in the recent literature related to predict-
ing student retention/dropout of different HE institutions around the world.
Table 2 exhibits a comparison of these techniques. Clearly, attrition affects educational
institutions worldwide, but there is no consensus on the variables to be considered in the
ML algorithms employed among the different studies reviewed. Thus, EDM research needs
to be developed and adjusted according to local conditions or the specific characteristics of
HE institutions and countries.
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Table 2. Comparison of data mining techniques in the literature to predict university student retention..

Reference Instances Technique(s) Confusion Matrix Accuracy Institution Country

[7,8] 16,066 ANN, DT, SVM,
LR Yes 87.23% Oklahoma State

University USA

[23] 713 DT, NB, LR,
EM, RF Yes 80% Eindhoven

University
of Technology Netherlands

[24] N/A ANN, SVM,
EM No N/A National

Technical
University of

Athens Greece

[25] 8025 DT, NB Yes 79% Kent State
University USA

[26] 452 ANN, DT, KNN Yes N/A University
of Chile Chile

[27] 6078 NN, NB Yes N/A Roma Tre
University Italy

[28] 17,910 RF, DT Yes N/A University
of Duisburg Germany

[29] N/A LR, DT, ANN,
EM No N/A N/A

N/A USA
[30] 1500 CLU, SVM, RF No N/A University

of Bologna Italy
[31] 6470 DT No 87% Mugla Sitki

Kocman
University Turkey

[32] 811 EM, NB, KNN,
ANN No N/A Mae Fah

Luang
University Thailand

[33] 3877 LR, SVM, DT No N/A Purdue
University USA

[34] 456 ANN, DT No N/A University of
Computer

Science Cuba

[35] 1359 NB, SVM Yes 87% Federal
University
of Rio de
Janeiro Brazil

[36] N/A N/A No 61% Unitec Institute New
of Technology Zealand

[37] 22,099 LR, DT, ANN No N/A several
universities USA

[38] 1055 C45, RF, CART,
SVM No 86.6% University

of Oviedo Spain

[39] 6500 DT, KNN No 98.98% Technical
University
of Izúcar Mexico

[40] N/A DT Yes N/A N/A
N/A India

[41] 6690 ANN, LR, DT No 76.95% Arizona State
University USA

Prior research on the use of EDM in Chile was reported in [26,42]. However, these
studies are not conclusive in terms of retention patterns due to the limitations of the data
used. Hence, to the best of our knowledge, there are no recent studies of EDM in Chile that
provide predictive models for student retention at various levels of HE institutions based



Entropy 2021, 23, 485 6 of 23

on modern data mining and ML techniques. Therefore, the objectives of this study are:
(i) to formulate EDM models based on ML algorithms for extracting relevant information
with appropriate educational data in any HE institution with similar conditions to the
Chilean case; and (ii) to utilize this information to help the KDD process.

1.4. Models and Description of Sections

Four models are proposed in this research as schematized in Figure 1. From this figure,
the first one is a global model, which is proposed to predict the student retention regardless
of the year (level) when student dropout occurred. The second model is formulated to
predict the retention of freshmen students (considering who dropped out of their studies
during the first year). The third and fourth models allow us to predict student retention
during the second and third year of study, respectively, different from the first and second
models because they incorporate university grades. A group of ML algorithms is applied
to describe each model, whereas their performances are compared at each level in terms
of accuracy and precision, as well as false positive (FP) and true positive (TP) rates. An
unpublished real educational data set is used as a case study based on enrollment records
from the Catholic University of Maule (Universidad Católica del Maule in Spanish) (UCM,
http://www.ucm.cl (accessed on 15 April 2021)), a Chilean HE institution located in Talca,
a city 253 km south of Santiago, the capital city of Chile. These data cannot be shared
publicly as they contain potentially identifiable or confidential student information.

Figure 1. Scheme of the four different models proposed to predict student retention/dropout, where
PSU indicates the university selection test.

The rest of this paper is organized as follows. In Section 2, we present the methodology
to be used. Section 3 applies the methodology to the Chilean real educational data. In
this section, we provide an algorithm that summarizes the methodology proposed in our
research. Some conclusions of the research are provided in Section 4. In this section, we also
discuss knowledge discovery indicating the reasons for dropping out of studies beyond
the results of the ML algorithms. In addition, we give some ideas about future research.

http://www.ucm.cl
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2. Methodology

In this section, we present the methodology to be used including its contextualization,
and the steps of data selection, preprocessing, transformation, data mining/ML algorithms,
and interpretation/evaluation.

2.1. Contextualization

This study is based on the KDD methodology, but modified to formulate a model
according to Figure 1. The KDD methodology includes an iterative and interactive process
where subject’s experience is combined with a variety of analysis techniques including ML
algorithms for pattern recognition and modeling development. Figure 2 exhibits a diagram
of the KDD methodology, which consists of the following five ordered steps:

(i) Data selection,
(ii) Preprocessing,
(iii) Transformation,
(iv) Data mining/ML algorithms, and
(v) Interpretation/evaluation [43].

All these steps are described in the context of the present study. The first three steps are
related to how data are gathered and processed. The fourth step is explicitly associated with
the data mining modeling that evaluates diverse ML algorithms. Then, an interpretation
and evaluation procedure is addressed in order to complete the KDD methodology.

Figure 2. Scheme of the KDD methodology.

2.2. Data Selection

Sources for data selection can vary depending on the study carried out. The data type
can be associated with quantitative or qualitative variables, where the qualitative case may
contain nominal or ordinal scales. Once relevant data are selected according to the aim of
data mining, their preprocessing should be pursued [44]. For the case study considered
here, see Section 3.

2.3. Preprocessing and Transformation

The preprocessing step is performed in order to organize the selected data set into a
manageable form, which is necessary for the subsequent phases of the KDD methodology.
Researchers focus on identifying missing or noisy data in the entire collected data set to
be removed or transformed into new data. These undesirable data are collected probably
during the student registration process and exhibit inaccuracies when compared to dif-
ferent data sets. Then, the remaining (desirable) data and features are analyzed using an
information gain (IG) procedure, which is a tool to measure the correlation of different
variables with the target variable (student dropout in or case). IG is one of the simplest,
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fastest, and most accurate procedures to rank features, which is suitable and able to work
with a high dimensionality of variables [45].

The transformation step involves the preliminary data processing and the generation
of new variables from the existing ones. For example, several correlated variables are
processed in order to generate a single feature that embodied them, as in the case of
student stratification age when initiating studies. This stage focuses on the normalization
of different features and data selected for the study in order to standardize all the data
on similar scales, thus avoiding bias problems due to a broad range of values for certain
variables.

2.4. Data Mining/ML Algorithms

The data mining/ML step establishes the modeling phase properly. Next, we provide
some details of the ML algorithms used in Section 3 (case study).

Decision trees: This is a decision support technique that employs a DT-type model and its
possible options, which include probabilities and their corresponding expected financial
values. The DT technique has an algorithmic or sequential structure with nodes that
contain conditional control aspects and branches that represent the response of each aspect.
Specifically, the DT technique may be formulated as a combination of statistical and
computational tools to categorize, describe, or generalize a data set. Each instance used in
DT is collected in the form (X, Y), with Y being the dependent variable corresponding to
the response or target that we are trying to explain, classify, or generalize by means of the
feature (independent variable) X.

k-nearest neighbors: This is a non-parametric technique utilized for regression or classi-
fication, as a simple algorithm that stores the current data and classifies new data based
on distances. In regression or classification, the input is based on the k closest training
instances in the space of the independent variable (feature), whereas the output depends
on whether KNN is employed for regression or classification. Note that k is a previously
fixed value. For regression, the output is the average of the k-nearest neighbors. For clas-
sification, the output is an object assigned to the class most common among its k-nearest
neighbors. Specifically, suppose we have n pairs of data or instances (x1, Y1), . . . , (xn, Yn),
where Y is the class label of the feature X, so that X|Y = c ∼ Fc, for c = 1, 2 classes, where
Fc is a probability model and “∼” denotes “distributed as”. Given a norm ‖ · ‖ and a
point x, let (x(1), Y(1)), . . . , (x(n), Y(n)) be an ordering of the training instances such that
‖x(1) − x‖ ≤ · · · ≤ ‖x(n) − x‖. Then, the k instances must be retained from the current
data set closer to x and take their values of Y.

Logistic regression: This is a statistical modeling technique, which can be considered
within the class of generalized linear models and is often used to describe a binary response
variable by means of quantitative or qualitative independent variables (features). For
example, for an LR model with one independent variable X, which may be continuous or
binary, the general form of the log-odds is l = β0 + β1x, where the coefficients β0, β1 are
the regression parameters and x is the observed value of X. Note that this is a log-linear
model, so that the odds are the exponent o = bβ0+β1x, corresponding to a non-linear model,
since the odds are a non-linear combination of the independent variable, where the base b
is usually taken to be the exponential function. Then, the associated probability function of
Y = 1 is p = P(Y = 1) = exp(β0 + β1x)/(exp(β0 + β1x) + 1) = 1/(1 + exp(−β0 − β1x)).

Naive Bayes: This is a simple probabilistic technique used as a classifier and based on the
Bayes theorem with the naive assumption of conditional independence between every
pair of features (independent variables) given the value of the class variable. NB is a
conditional probability model for classification established by the independent variables
X = (X1, . . . , Xp), which assigns the probabilities P(Y = c | X = x) to each of c possible
classes of Y. Therefore, by using the Bayes theorem, the conditional probability can be
decomposed as P(Y = c | X = x) = (P(Y = c) P(X = x | Y = c))/P(X = x). Thus, the
conditional probability model is derived, and then, the NB classifier is formed by this
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model and by the maximum value for some c stated as ŷ = argmaxc P(Y = c)∏
p
j=1 P(Xj =

x | Y = c), which indicates what class must be assigned to the new instance.

Random forest: This is an EM technique for regression or classification that allows us to
construct multiple DT at training time and providing as the output the class corresponding
to the mean prediction (regression) or the mode of the classes (classification) of the single
trees. RF corrects using DT the possible overfitting in their training set. For example, RF
works as follows if bootstrapping is used. Given a training set x = (x1, . . . , xn)> with
responses variables Y = (Y1, . . . , Yn)>, bagging repeatedly (for example, B times), select a
random sample with the replacement of the training set, and fit DT to these samples as
follows. For b = 1, . . . , B: (i) sample, with replacement, n training sets from (x, Y), which
are called (xb, Yb); and (ii) train a classification or regression fb on (xb, Yb). After training,
predict for the testing set x′ by averaging the predictions from all the single regressions on
x′, with f̂ = (1/B)∑B

b=1 fb(x′), or by taking the majority in the case of classification.

Support vector machines: This is a supervised technique associated with learning algo-
rithms that analyze data employed for regression and classification. In the linear case,
we must have a training set of n points of the form (x1, Y1), . . . , (xn, Yn), where the Yi is
either 1 or −1, each indicating the class to which the point xi belongs, with each xi being a
p-dimensional vector. We want to find the maximum-margin hyperplane that separates
the group of points xi, when Yi = 1, from the group of points with Yi = −1. This is defined
so that the distance between the hyperplane and the nearest point xi from any group is
maximized. Any hyperplane may be represented as the set of points xi that satisfy the
condition w · x− b = 0, where w is the normal vector to the hyperplane. The parameter
b/‖w‖ determines the offset of the hyperplane from the origin along the normal vector w.

2.5. Data Mining/ML Algorithms’ Performance

The performance of the different ML algorithms considered can be evaluated using an
s-fold cross-validation procedure, where the data set is split into s equal sets, s− 1 of them
used for training the model (training set), whereas the remaining set is used for testing the
performance of the model (testing set) [46]. This procedure must be repeated a number of
times (for example, s = 10, one for each set), and the results may then be averaged for their
evaluation ensuring that they are independent of the selected partition with respect to the
training and testing sets. We use the performance metrics proposed in [47] to evaluate each
ML algorithm considered. These metrics are described below and based on the confusion
matrix presented in Figure 3.

Actual value

Predicted value

Positive Negative

Positive
True
positive
(TP)

False
negative
(FN)

Negative
False
positive
(FP)

True
negative
(TF)

Figure 3. Confusion matrix and performance metrics.

Accuracy: This represents a measure of the total number of instances correctly classified.
For our case study, this considers both classes, students who are retained and those who
drop out of their studies.

TP rate: For our case study, this is the proportion of retained students who are correctly
predicted or classified by the learning algorithm, from all the retained students. We expect
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to keep this rate as high as possible, because it indicates the students who are retained and
will continue studying.

FP rate: For our case study, this corresponds to the proportion of students who drop out,
but the learning algorithm incorrectly classifies them as retained. We expect to maintain
this rate as low as possible, because it indicates the students who will drop out and who
the models will not detect.

Precision: This is estimated as the ratio of the TP rate to the sum of the TP and FP rates,
that is, precision = TP/(TP + FP), indicating for our case study the proportion of retained
students correctly classified from those who were predicted by the learning algorithm. We
expected to maintain this precision as high as possible, because it indicates the correct
number of students who will drop out between the number predicted as dropouts.

F-measure: This is related to the harmonic mean of the precision and TP rate, a measure that
ranges from zero to one, with a value close to one being considered as a good performance,
because it indicates an equilibrium between precision and the TP rate.

Root mean squared error (RMSE): This is a measure of the differences between the values
predicted by a model and the observed values. The RMSE is a measure of precision used to
compare the prediction errors of different models for a particular data set. A small value of
the RMSE means a better accuracy of the model.

κ-statistic: This is a statistic that measures similarity or agreement. The κ-statistic is defined
as κ = (pa − pe)/(1− pe), where pa is the proportion of times the raters agree, that is,
the percentage of agreement between the classifier and ground truth; whereas pe is the
proportion of times the raters are expected to agree by chance alone, that is, the chance of
agreement. Values of the κ-statistic close to one indicate better results of the classifier.

Friedman value (ranking): The Friedman test is a non-parametric approach that is equiva-
lent to the parametric one-way ANOVA test. Both tests are used to detect differences in
multiple treatments. Given the data {xij}n×c, that is, a matrix with n rows (the replicates)
and c columns (the treatments or classes), we calculate the ranks within each row. If ties
existed, we assign to each tie the average of the ranks that would have been assigned
without ties. The procedure is as follows: (i) replace the data with a new matrix {rij}n×c,
where the entry rij is the rank of xij within row i; (ii) find the values r̄·j = (1/n)∑n

i=1 rij; (iii)
calculate the test statistic given by Q = (12n/(c(c + 1)))∑c

j=1(r̄·j − (c + 1)/2)2. Observe
that the value of Q needs to be adjusted for tied values in the data. When n or c is large
(that is, n > 15 or c > 4), Q is approximately chi-squared distributed with c− 1 degrees
of freedom, and then, p-value = P(χ2

c−1 ≥ Q). If n or c is small, the approximation to the
chi-squared distribution is poor, and the p-value can be obtained from software. If the
p-value is significant, suitable post-hoc multiple comparison tests must be performed.

2.6. Interpretation and Evaluation

In this final phase, the performance of different ML algorithms must be compared in
order to select the best algorithm. One must focus on those algorithms that exhibit a high
TP rate, precision, and κ-statistic, but a low FP rate and RMSE, as well as on those variables
or features that seem to be more important to model the diverse scenarios considered in the
study under analysis. Note that the main focus must be on the results of the IG analysis for
the situations modeled, providing key features for identification. In addition, we apply the
Friedman rank test [48] (pp. 262–274) to compare the different algorithms statistically [49].
For more details and tools about statistical tests for comparing the ML algorithms, the
interested reader is referred to the web platform https://tec.citius.usc.es/stac (accessed
on 11 April 2021), where one can verify the results obtained from the learning algorithms
applying these statistics.

https://tec.citius.usc.es/stac
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3. Case Study

In this section, we apply the methodology presented in Section 2 to the Chilean
educational data and summarize in an algorithm this methodology.

3.1. ML Algorithms and Computer Configurations

In our study, the ML algorithms were trained to correctly distinguish among students
who were retained from those who dropped out of the university, which is the focus of
our study. We evaluate the ML algorithms: DT, KNN, LR, NB, RF, and SVM using the
Weka software (V3.6.11) on a Windows 7 Professional 64-Bit, Intel Core i3-3120 Processor
with 2.5 GHz and 10 GB of RAM; https://www.cs.waikato.ac.nz/ml/weka (accessed on
12 March 2015).

Algorithm 1 provides a summary of the methodology proposed in this study.

Algorithm 1 Methodology proposed to predict student retention/dropout in HE institu-
tions similar to the Chilean case.

1: Collect and input data about the PSU scores (or equivalent depending on the country), CP index,
economic quintiles, and first/second year scores.

2: Standardize attribute names in the input data.

3: Perform cleanup and removal of missing/noisy/duplicate instances in input data.

4: Eliminate data features that do not add value according to [16].

5: Create a data subset using the PSU scores, CP index, and economic quintiles.

6: Extract data of students with more than three years of academic follow-up.

7: State classes for data as two values considering actives and dropouts.

8: Arrange data for the global model from the full data set considering dropout at any level.

9: Assemble data for the first level model from the full data set considering dropout in the first year
only.

10: Dispose data for the second-level model from the first-level data with the first-level retained
students plus the first-year scores.

11: Organize data for the third-level model from the second-level data with the second-level retained
students plus the second-year scores.

12: Apply ML algorithms to the global model with the data of Step 8, and analyze the results.

13: Employ ML algorithms for the first-level model with the data of Step 9, and state the results.

14: Use ML algorithms for the second-level model with the data of Step 10, and obtain the results.

15: Utilize ML algorithms for third-level model with the data of Step 11, and indicate the results.

16: Establish the performance of the ML algorithms, and propose the best one.

3.2. Data Selection

As mentioned, the data used in this case study were obtained from UCM records.
Until the year 2015, this university annually accepted approximately one-thousand fresh-
man students, distributed through 18 undergraduate programs. As shown in the chart of
the quintiles in Figure 4, nearly 50% of students enrolled at UCM came from the poorest
national economic quintile, and only 5% belonged to the richest quintile. The data set
selected for our study contains numerous variables related to demographic background,
financial indicators, geographic origin, school performance, and university performance,
among others. As also mentioned, the UCM imposed restrictions on the use of these
data, when this study began in 2013, as they contain potentially identifiable or sensi-
tive information about students. An agreement not to disclose these data was signed
by the authors so that any request for them must be directed to its ethics committee
(http://portal.ucm.cl/comite-etica-cientifico (accessed on 15 April 2021)).

Table 3 summarizes the most important variables and specific features considered at
this stage of data selection. The study also considered a characteristic called the CP index,

https://www.cs.waikato.ac.nz/ml/weka
http://portal.ucm.cl/comite-etica-cientifico
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which was estimated for each student and related to the socioeconomic context of the place
of origin from which the student came before entering the university. The list of features
was then considered for this study after the pre-processing step and shown in Table 4.

At this stage, the data sources and types to be used were determined by extracting
the most relevant data. These data considers existing records from different databases
and various sources, including official data and statistics from the Chilean government
(https://www.demre.cl [50] (accessed on 15 April 2021)), secondary educational institu-
tions, and from the UCM databases. All these data were gathered in a warehouse composed
of 6656 instances for students enrolled between the years 2004 and 2010. A total of 165
features were collected for each of the students involved in this study, including the target
variable of interest. These features are the basis to predict the occurrence of dropout.

Table 3. Most representative variables considered for the UCM case study.

Attributes Features

Demographic background Name, age, gender.
Geographic origin Place of origin, province.

Socioeconomic index CP index.
School performance High school grades, secondary educational score (NEM), PSU score.

University performance Number of approved courses, failed courses, approved credits, failed credits.
Financial indicators Economic quintile, family income.

Others Readmissions, program, application preference, selected/waiting list, health insurance.

Table 4. List of variables selected after the pre-processing step for the UCM case study.

Attributes

Age
Application preference
Approved credits 1th semester
Approved credits 2nd semester
Approved credits 3rd semester
Approved credits 4th semester
Approved courses 1th semester
Approved courses 2nd semester
Approved courses 3rd semester
Approved courses 4th semester
CP index
Dependent group
Educational area
Entered credits 1th semester

Entered credits 2nd semester
Entered credits 3rd semester
Entered credits 4th semester
Family income
Gender
Graduate/non-graduate
Health insurance
Marks 1th semester
Marks 2nd semester
Marks 3rd semester
Marks 4th semester
NEM
Program
Province

PSU averaged score in language/maths
PSU score of language
PSU score of maths
PSU score of specific topic
PSU weighted score
Quintile
Readmissions
Registered courses 1th semester
Registered courses 2nd semester
Registered courses 3rd semester
Registered courses 4th semester
School
Selected/waiting list

https://www.demre.cl
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Figure 4. Dashboard of enrollment in the UCM.
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3.3. Preprocessing, Transformation of Data, and Initial Results

Construction of a data warehouse enables any university decision makers to obtain
key performance factors for their organization, allowing them to query and deliver reports.
In this study, we perform a cleanup and reduction of missing and/or noisy data, selecting
the variables that provide the most relevant information. Initially, our data warehouse
consisted of 165 variables, but after removing noisy data, forty-one variables were selected
for further analysis; see Section 2.3.

As described in Figure 1, four predictive models are evaluated in this research. The
first one is a global model for the prediction of student retention regardless of the level (year)
when student dropout occurs. The second model attempts to predict student retention for
those who dropped their studies during the first year. The third and fourth models are used
to predict student retention during the second and third year of study, respectively. The
first and second models utilize 21 variables from the total set selected, because university
grades are not employed in these cases. Instead, our study considers variables related to
the data of students prior to enrollment to their university. For the third and fourth model,
thirty-one and 41 variables are utilized, respectively. The academic records of students
considering their educational performance data during the first and second year of study
are incorporated into the modeling.

An IG procedure is developed to rank the variables used in each scenario modeled.
Table 5 exhibits the variable ranking by using the IG index for the four models evaluated,
considering the first 20 variables with the highest IG scores in each case. Among the
best-ranked variables, secondary school academic performance is particularly relevant.
Demonstrated by the first rank position of NEM, this variable represents the average
for secondary school grades, obtained in the first three scenarios modeled. However,
this variable does not appear in the ranking related to the fourth model. Note that, in
general, other variables associated with the PSU scores are not highly ranked in the models.
Interestingly, the CP index is in the second position of the IG rankings for the global, first-,
and second-level models. Various reasons for this lack of importance can be postulated.
Perhaps the CP index weighs more on early dropout. Similar to the case of the NEM
variable, it seems not to be pertinent for the fourth model. The relevance of the CP index
for the prediction of university student retention has not been reported in previous studies.
Nevertheless, this factor seems to have a high influence and should be studied further.
Different from the situation addressed in [51], in our study, the information from the
economic quintile seems to be less relevant, and it is classified from the sixth position for
the majority of the models analyzed. In addition, the variables associated with university
student performance, which are incorporated only for the third and fourth models, have a
relevant position in the ranking. Therefore, the fourth model describes the positive values
of the IG indicator, which are much less relevant in comparison to the previous models.
This indicator shows that the task associated with predicting student retention at this level
is a more difficult problem and that dropout may be affected by factors not included here.

3.4. Performance Evaluation of Predictive Models

Our study focused on the prediction of students who dropped out of the university,
considering different scenarios depending on the period when they effectively dropped out
of the university. Four different situations were established for modeling as schematized in
Figure 1. The defined problem comprised two classes: (i) the positive class associated with
students who were retained by the university and (ii) the negative class associated with
students who dropped out of the university at different levels. These retention and dropout
issues are common in the world. Thus, this study has relevance for HE institutions around
the world with similar conditions to the Chilean case. Several ML algorithms were trained
so that they aimed to classify or predict whether a student who entered the university
would be successful (that is, she/he will finish their studies) or will drop out of her/his
studies during the process. The performance of the predictive models were evaluated for
the different model scenarios, focused on those exhibiting a high TP rate, low FP rate, low
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RMSE, and a κ-statistic close to one. High values of the accuracy, precision, and F-measure
were also employed for evaluating precision and accuracy. In addition, as mentioned, we
applied the Friedman test for comparing the different algorithms, arriving at results similar
to those obtained with the other measures.

Table 5. Ranking of features using the IG procedure for each model scenario in the UCM case study.

Global First Level Second Level Third Level
Rank IG Variable IG Variable IG Variable IG Variable

1 0.430 NEM 0.511 NEM 0.357 NEM 0.098 Marks 3rd semester
2 0.385 CP index 0.468 CP index 0.220 CP index 0.087 Marks 4th semester
3 0.209 Program 0.286 School 0.211 School 0.084 Approved course 3rd semester
4 0.204 School 0.190 Program 0.211 Approved courses 2nd semester 0.083 Approved courses 2nd semester
5 0.105 PSU specific topic 0.112 PSU specific topic 0.195 Approved credits 2nd semester 0.074 School
6 0.068 Quintile 0.110 PSU language 0.183 Approved credits 1th semester 0.069 Marks 1th semester
7 0.059 Gender 0.098 Quintile 0.176 Approved courses 1th semester 0.067 Approved courses 4th semester
8 0.051 Family income 0.056 Age 0.163 Marks 1th semester 0.066 Approved courses 1th semester
9 0.041 Age 0.053 Educational area 0.149 Program 0.063 Marks 2nd semester
10 0.037 Educational area 0.047 PSU weighted score 0.141 Marks 2nd semester 0.059 Approved credits 1th semester
11 0.034 PSU language 0.043 Graduate/non-graduate 0.130 Entered credits 2nd semester 0.059 Entered credits 4th semester
12 0.030 Province 0.037 Family income 0.103 Entered credits 1st semester 0.056 Approved credits 2nd semester
13 0.027 Application preference 0.034 Province 0.079 Registered courses 2nd semester 0.051 Approved credits 4th semester
14 0.026 Health insurance 0.033 Gender 0.058 Gender 0.049 Entered credits 3rd semester
15 0.025 Readmissions 0.030 PSU math 0.038 Registered courses 1st semester 0.049 Program
16 0.025 PSU weighted score 0.029 Readmissions 0.032 Province 0.048 Entered credits 4th semester
17 0.019 PSU math 0.028 Health insurance 0.030 Family income 0.044 Approved credits 3rd semester
18 0.015 Graduate/non-graduate 0.025 PSU language/math 0.029 Quintile 0.042 Registered courses 1th semester
19 0.014 PSU language/math 0.022 Application preference 0.025 Age 0.030 Registered courses 3rd semester
20 0.001 Dependent group 0.001 Dependent group 0.024 Educational area 0.030 Registered courses 4th semester

Global model results: The global model involves the prediction of all students, regardless
of the level when they dropped out of the university. Table 6 reports the performance of
the different ML algorithms evaluated. Most of the assessed learning algorithms exhibited
accuracies near or slightly over 80%. In addition, most models evaluated presented high
TP rates with values ranging from 0.89 to 0.98, which indicated good performance, mainly
on the prediction of retained students. However, at the same time, high values for the FP
rates over 0.63 were observed for all the learning algorithms evaluated. Nevertheless, for
all models, the RMSE exceeded 0.36, and the κ-statistics were low, being less than 0.28.
These results imply that ML algorithms show difficulties in correctly predicting students
who drop out of their programs, as also reported in [7,8]. This situation could reveal a
problem associated with an unbalanced class, in which the number of instances of the
majority class (that is, retained students) exceeds by five times the number of instances
in the minority dropout class. Thus, the learning algorithms tend to bias their results
towards the prediction of instances in the majority class. To address the unbalanced
class problem, we followed a methodology named the synthetic minority over-sampling
technique (SMOTE) [52]. In this technique, instances of the classes are artificially balanced,
increasing the number of instances in the minority class, in order to decrease the effect on
the performance of the learning algorithms. SMOTE is an accepted methodology to deal
with unbalanced class situations.

Table 7 reports the performance of different ML algorithms evaluated under the bal-
anced class situation. We use 10-fold cross-validation to perform the training and testing
process for prediction. The accuracy, as well as the values for the precision and F-measure
scores, remained high for all models. The effect of balancing the classes was clearly no-
ticeable because of an important reduction of the FP rates ranging from 0.13 to 0.22 for all
learning algorithms evaluated, while maintaining relatively high scores for the TP rates,
with a slight decrease in the RMSE and an increase in the value of the κ-statistic, now being
between 0.58 and 0.68. Among the ML techniques evaluated, the performance obtained
by the RF technique, reaching good values in all performance measures considered, out-
performed the other techniques. Even though the best performance for the FP rate was
obtained by the KNN technique, this also exhibited low scores for the TP rate, accuracy,
and F-measure compared to the RF technique. The results obtained from the Friedman test
for the ML algorithms are also reported in Table 7. According to this table, both the RF
and SVM algorithms ranked first based on the post-hoc multiple comparisons established
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between all the ML algorithms; see Appendix A (Table A1). The statistical results of the
Friedman rank test presented in Table 7 confirmed that the superiority of the RF algorithm
over the four ML algorithms analyzed was not random.

Table 6. Global model performance considering an unbalanced class situation for the UCM case
study.

ML Algorithm Accuracy Precision TP Rate FP Rate F-Measure RMSE κ-Statistic

DT 82.75% 0.840 0.973 0.806 0.902 0.365 0.227
KNN 81.36% 0.822 0.984 0.929 0.896 0.390 0.082

LR 82.42% 0.849 0.954 0.739 0.898 0.373 0.271
NB 79.63% 0.860 0.894 0.631 0.877 0.387 0.283
RF 81.82% 0.829 0.979 0.879 0.897 0.370 0.143

SVM 81.67% 0.828 0.977 0.881 0.897 0.428 0.138

Table 7. Global model performance considering a balanced class situation for the UCM case study.

Algorithm Accuracy Precision TP Rate FP Rate F-Measure RMSE κ-Statistic Friedman Value (Ranking)

DT 82.19% 0.814 0.837 0.194 0.825 0.368 0.644 3.49475 (4)
KNN 83.93% 0.859 0.814 0.135 0.836 0.363 0.679 3.61317 (6)

LR 83.45% 0.825 0.851 0.182 0.838 0.351 0.669 3.48317 (3)
NB 79.14% 0.791 0.796 0.213 0.793 0.399 0.583 3.51025 (5)
RF 88.43% 0.860 0.920 0.151 0.889 0.301 0.769 3.45125 (1)

SVM 83.97% 0.822 0.869 0.190 0.845 0.400 0.679 3.44875 (1)

First-level model results: The first-level model was focused only on assessing freshman
dropout. This case also faced the unbalanced class situation as stated in the case of the
global model. Here, the relationship between the instances of majority and minority classes
was 11-1 and with the same problems related to the prediction of the minority class. SMOTE
was again employed in order to balance the classes. The performance of different ML
algorithms is exhibited on Table 8. An important increment occurred in the accuracy of
all the learning algorithms evaluated, reaching values near 90%. This was coincident with
an increment in the TP rate, a reduction in the FP rate, a decrease in the RMSE, and an
increase in the value of the κ-statistic, for most cases. In the first-level model scenario, the
RF technique also exhibited the best performance among techniques on all the measures
calculated, reaching the lowest FP rate (0.119) and RMSE (0.238), as well as the highest
TP rate (0.976) and κ-statistic (0.868). The KNN technique also improved importantly
its performance compared to the global model scenario. The results reported with the
Friedman test for the ML algorithms are also in Table 8. From this table, the RF algorithm
ranked first, and the DT algorithm was in second position. According to this table, both the
RF and DT algorithms ranked first based on the post-hoc multiple comparisons established
between all the ML algorithms; see Appendix A (Table A2). Once again, the statistical
results of the Friedman rank test presented in Table 8 confirmed that the superiority of the
RF algorithm was not random.

Table 8. First-level model performance for the UCM case study.

Algorithm Accuracy Precision TP Rate FP Rate F-Measure RMSE κ-Statistic Friedman Value (Ranking)

DT 89.21% 0.888 0.933 0.166 0.910 0.294 0.775 3.44033 (1)
KNN 89.43% 0.929 0.887 0.096 0.908 0.298 0.784 3.61133 (6)

LR 87.70% 0.885 0.908 0.166 0.896 0.309 0.745 3.48183 (4)
NB 83.95% 0.869 0.854 0.181 0.862 0.349 0.671 3.56733 (5)
RF 93.65% 0.921 0.976 0.119 0.947 0.238 0.868 3.42083 (1)

SVM 88.30% 0.889 0.914 0.160 0.901 0.342 0.758 3.47883 (3)
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Second-level model results: The second-level model, which considered dropout for
second-year students, provided information not included in the previous two models
related to academic performance during the first year of HE institutions. The previous
relationship to the balance of classes was 19-1 in this case. SMOTE was also employed here
in order to balance the classes, as again the algorithms showed problems when predicting
the minority class instances. The performance of different ML algorithms is exhibited in
Table 9. In this case, an increment occurred in the accuracy and TP rates for most learn-
ing algorithms evaluated, compared to those obtained in the global and first-level model
scenarios. However, at the same time, an increment occurred in the FP rate compared to
previous model scenarios. Thus, in this second-level model scenario, SMOTE was unable
to completely cope with the unbalanced class situation, and learning algorithms seemed
to reduce their capacity to efficiently predict dropout students. Among the learning al-
gorithms evaluated in this model scenario, there was no important difference between
the performances of the RF and KNN techniques. The results of the Friedman test for
the ML algorithms presented in Table 9 indicated once again that the RF algorithm was
superior. However, the other ML algorithms were closely positioned with only the NB
algorithm being statistically different from the RF algorithm based on the post-hoc multiple
comparisons established between all the ML algorithms; see Appendix A (Table A3). Once
again, the statistical results of the Friedman rank test presented in Table 9 confirmed that
the superiority of the RF algorithm was not random.

Table 9. Second-level model results for the UCM case study.

ML Algorithm Accuracy Precision TP Rate FP Rate F-Measure RMSE κ-Statistic Friedman Value (Ranking)

DT 91.06% 0.938 0.954 0.288 0.946 0.278 0.687 3.45675 (3)
KNN 94.41% 0.965 0.967 0.161 0.966 0.222 0.809 3.49425 (5)

LR 93.57% 0.958 0.964 0.193 0.961 0.232 0.779 3.48625 (4)
NB 86.69% 0.954 0.880 0.194 0.916 0.347 0.603 3.69075 (6)
RF 95.76% 0.959 0.99 0.196 0.975 0.193 0.847 3.41825 (1)

SVM 94.40% 0.958 0.975 0.196 0.966 0.237 0.804 3.45425 (2)

Third-level model results: Similar to the previous model scenarios, an unbalanced class
situation existed, in which the relationship between classes was 33-1. The performance
of ML algorithms after applying SMOTE is exhibited in Table 10. In this case, the FP
rates of most algorithms evaluated had an important increment, reaching similar values
to those obtained when no balancing by SMOTE was utilized. This clearly indicates that
SMOTE was unable to adequately reduce the unbalanced class situation. However, the
result obtained by the NB technique was interesting, because it remained better than the
other algorithms and still performed well enough. The results obtained from the Friedman
test for the ML algorithms are also reported in Table 10. According to this table, both the
RF and DT algorithms ranked first based on the post-hoc multiple comparisons established
between all the ML algorithms; see Appendix A (Table A4). The statistical results of the
Friedman rank test presented in Table 10 confirmed that the superiority of the RF algorithm
over the four ML algorithms analyzed was not random.

Table 10. Third-level model performance for the UCM case study.

ML Algorithm Accuracy Precision TP Rate FP Rate F-Measure RMSE κ-Statistic Friedman Value (Ranking)

DT 94.99% 0.955 0.993 0.739 0.974 0.208 0.360 3.35866 (1)
KNN 96.90% 0.977 0.990 0.371 0.984 0.168 0.689 3.43132 (3)

LR 90.58% 0.973 0.926 0.414 0.949 0.305 0.376 3.60561 (5)
NB 88.09% 0.987 0.885 0.181 0.933 0.331 0.396 3.76270 (6)
RF 96.92% 0.969 0.999 0.503 0.984 0.160 0.641 3.38406 (1)

SVM 96.17% 0.978 0.982 0.356 0.980 0.196 0.644 3.45825 (4)
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3.5. Interpretation and Evaluation

With the results obtained in this case study, it is clear that predictive models at various
levels can be applied to prevent dropout in any HE institution around the world with
similar conditions to the Chilean case. In the present case study, we gave new insights
and obtained a deeper understanding of the student retention/dropout problem in the
Chilean HE institutions, based on the case of UCM. In addition, testing the predictive
model as universally as applicable can aid in the design of alternatives and strategies for
decision-makers to reduce student dropout rates in their institutions.

4. Conclusions, Results, Limitations, Knowledge Discovery, and Future Work

In this study, we focused on two aspects: (i) the use of data mining and machine
learning algorithms to extract information; and (ii) the utilization of this information for
knowledge discovery in databases. When using such algorithms, we formulated models
based on them to predict student retention at three levels of study, employing higher
education data and specifying the relevant variables involved in the modeling. Then,
once the machine learning algorithms were applied and the final models were obtained,
knowledge discovery could be extracted for higher education student retention based on a
case study in Chile.

Regarding the data mining and machine learning algorithms, the results obtained
with the predictive models formulated in this research indicated that predicting student
dropout was possible at an accuracy that exceeded 80% in most scenarios and reaching
false positive rates ranging from 10% to 15% in most cases; see Tables 6–10. Regardless
of the machine learning algorithm used, in all evaluated scenarios, it was necessary to
balance the classes. This procedure generated better results for the first three models
(global, first-level, and second-level). However, the third-level model did not have good
predictive performance, likely due to the excessive difference between the number of
instances utilized to train the learning models, which was a limitation of our study. Among
all the machine learning algorithms evaluated, the random forest technique performed
best in general, especially when comparing in terms of false positive and true positive
rates, precision, F-measure, root mean squared error, and κ-statistic. The random forest
technique is robust, simple to understand, and implements logic diagrams, which can be
used during its construction. Furthermore, the Friedman rank test was applied in order
to further analyze the performance of the ML algorithms. Based on the results of this
statistical analysis, it was found that the random forest algorithm ranked first among the
studied algorithms, and its superiority was not random. Therefore, general analysis of the
statistical results confirmed the superiority of the random forest algorithm, making it more
competitive than the other five analyzed algorithms.

Regarding the knowledge discovery in databases, this study enabled the design of
educational data mining alternatives for decision-makers in order to reduce dropout rates.
Thus, our study exposed the benefits of a methodology useful to predict dropout for
each higher education institution supplying data, as well as to demonstrate credit risk for
banking institutions or government programs, providing financial assistance to higher
education applicants. Therefore, students who are at risk of dropout can be identified prior
to beginning their studies, proposing actions that can be directed towards at-risk students,
thereby minimizing attrition and directing retention resources only to targeted students.
The models in this case study predicted the level (year) when the student would drop
out, which enables further focusing resources allocated to reducing dropout rates. For
students who drop out at the end of the first year, the university will no longer receive
the income corresponding to four years. Thus, for every student retained, the university
could increase its annual income each year during the career program (4–5 years). From
the viewpoint of students, the opportunity cost of studying instead of working is also high.
For the Chilean government and other organizations, retention and dropout are similarly
relevant. In our case study, over 70% of Chilean higher education students were from low
economic quintiles. Thus, this information should be considered when assigning loans that



Entropy 2021, 23, 485 19 of 23

are guaranteed by the government for education that is not completed. We detected that
secondary education grades and the community poverty index were important predictive
variables, which have not been previously reported in educational studies of this type. The
dropout assessment at various levels reported here is valid for higher education institutions
around the world with similar conditions to the Chilean case, where dropout rates affect
the efficiency of such institutions. Having the ability to predict dropout based on student’s
data enables these institutions to take preventative measures, avoiding the dropout.

We propose the following plans/recommendations to be developed:

(a) Implement a new information system that enables different databases to coexist for
the quick acquisition of necessary information. Data warehouse compilation requires
extensive time to extract the relevant data from university records.

(b) Establish a data-monitoring plan to track the enrollment of all students for further
analysis and decision-making.

(c) Create a model for predicting students at risk of dropout at different levels of study.
(d) Employ a welcome plan for at-risk students who are identified by the predictive

model, in order to assist in improving academic results.
(e) Offer a support program at all grade levels for identifying at-risk students.
(f) In order to increase the innovation of future works, a voting scheme of the machine

learning algorithms used can be proposed or the explainability of an examined clas-
sifier may be promoted. Voting is an ensemble learning algorithm that, for example
in regression, performs a prediction from the mean of several other regressions. In
particular, majority voting is used when every model carries out a prediction (votes)
for each test instance and the final output prediction obtains more than half of the
votes. If none of the predictions reach this majority of votes, the ensemble algorithm
is not able to perform a stable prediction for such an instance.

The authors are considering future research on modifications to the existing method-
ology about educational data and of other types in order to improve its accuracy.
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Appendix A. Friedman Test Results and Post-Hoc Analysis

Table A1. Friedman test results and post-hoc analysis for the global model.

Friedman Test (Significance Level of 0.05)

Statistic p-value Result
360.428080 0.00000 H0 is rejected

Friedman Value Algorithm Ranking

3.44875 SVM 1
3.45125 RF 2
3.48317 LR 3
3.49475 DT 4
3.51025 NB 5
3.61317 KNN 6

Post-Hoc Analysis (Significance Level of 0.05)

Comparison Statistic p-value Result

KNN vs. SVM 4.16872 0.00046 H0 is rejected
KNN vs. RF 4.10534 0.00057 H0 is rejected
KNN vs. LR 3.29610 0.01274 H0 is rejected
KNN vs. DT 3.00241 0.03214 H0 is rejected
KNN vs. NB 2.60941 0.09977 H0 is accepted
NB vs. SVM 1.55931 1.00000 H0 is accepted
NB vs. RF 1.49592 1.00000 H0 is accepted

DT vs. SVM 1.16631 1.00000 H0 is accepted
RF vs. DT 1.10293 1.00000 H0 is accepted

LR vs. SVM 0.87262 1.00000 H0 is accepted
RF vs. LR 0.80924 1.00000 H0 is accepted
NB vs. LR 0.68669 1.00000 H0 is accepted
NB vs. DT 0.39300 1.00000 H0 is accepted
LR vs. DT 0.29369 1.00000 H0 is accepted

RF vs. SVM 0.06339 1.00000 H0 is accepted

Table A2. Friedman test results and post-hoc analysis for the first-level model.

Friedman Test (Significance Level of 0.05)

Statistic p-value Result
361.260066 0.00000 H0 is rejected

Friedman Value Algorithm Ranking

3.42083 RF 1
3.44033 DT 2
3.47883 SVR 3
3.48183 LR 4
3.56733 NB 5
3.61133 KNN 6

Post-Hoc Analysis (Significance Level of 0.05)

Comparison Statistic p-value Result

KNN vs. RF 4.83006 0.00002 H0 is rejected
KNN vs. DT 4.33564 0.00020 H0 is rejected

NB vs. RF 3.71445 0.00265 H0 is rejected
KNN vs. SVR 3.35949 0.00937 H0 is rejected
KNN vs. LR 3.28342 0.01128 H0 is rejected
NB vs. DT 3.22004 0.01282 H0 is rejected

NB vs. SVR 2.24388 0.22356 H0 is accepted
NB vs. LR 2.16782 0.24138 H0 is accepted
RF vs. LR 1.54663 0.85366 H0 is accepted

RF vs. SVR 1.47057 0.85366 H0 is accepted
KNN vs. NB 1.11560 1.00000 H0 is accepted

LR vs. DT 1.05222 1.00000 H0 is accepted
DT vs. SVR 0.97615 1.00000 H0 is accepted
RF vs. DT 0.49442 1.00000 H0 is accepted

LR vs. SVR 0.07606 1.00000 H0 is accepted
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Table A3. Friedman test results and post-hoc analysis for the second-level model.

Friedman Test (Significance Level of 0.05)

Statistic p-value Result
362.345869 0.00000 H0 is rejected

Friedman Value Algorithm Ranking

3.41825 RF 1
3.45425 SVM 2
3.45675 DT 3
3.48625 LR 4
3.49425 KNN 5
3.69075 NB 6

Post-Hoc Analysis (Significance Level of 0.05)

Comparison Statistic p-value Result

NB vs. RF 6.90914 0.00000 H0 is rejected
SVM vs. NB 5.99637 0.00000 H0 is rejected
NB vs. DT 5.93298 0.00000 H0 is rejected
NB vs. LR 5.18502 0.00000 H0 is rejected

KNN vs. NB 4.98218 0.00001 H0 is rejected
KNN vs. RF 1.92695 0.53986 H0 is accepted

RF vs. LR 1.72411 0.76218 H0 is accepted
KNN vs. SVM 1.01419 1.00000 H0 is accepted

RF vs. DT 0.97615 1.00000 H0 is accepted
KNN vs. DT 0.95080 1.00000 H0 is accepted
SVM vs. RF 0.91277 1.00000 H0 is accepted
SVM vs. LR 0.81135 1.00000 H0 is accepted
LR vs. DT 0.74796 1.00000 H0 is accepted

KNN vs. LR 0.20284 1.00000 H0 is accepted
SVM vs. DT 0.06339 1.00000 H0 is accepted

Table A4. Friedman test results and post-hoc analysis for the third-level model.

Friedman Test (Significance Level of 0.05)

Statistic p-value Result
360.476685 0.00000 H0 is rejected

Friedman Value Algorithm Ranking

3.35866 DT 1
3.38406 RF 2
3.43132 KNN 3
3.45825 SVM 4
3.60561 LR 5
3.76270 NB 6

Post-Hoc Analysis (Significance Level of 0.05)

Comparison Statistic Adjusted p-value Result

KNN vs. NB 8.33467 0.00000 H0 is rejected
NB vs. RF 9.52320 0.00000 H0 is rejected
NB vs. DT 10.16220 0.00000 H0 is rejected

SVM vs. NB 7,65733 0.00000 H0 is rejected
LR vs. DT 6.21106 0.00000 H0 is rejected
RF vs. LR 5.57207 0.00000 H0 is rejected

KNN vs. LR 4.38353 0.00011 H0 is rejected
NB vs. LR 3.95114 0.00062 H0 is rejected

SVM vs. LR 3.70619 0.00147 H0 is rejected
SVM vs. DT 2.50487 0.07350 H0 is accepted
SVM vs. RF 1.86588 0.31029 H0 is accepted
KNN vs. DT 1.82754 0.31029 H0 is accepted
KNN vs. RF 1.18854 0.70387 H0 is accepted

KNN vs. SVM 0.67734 0.99638 H0 is accepted
RF vs. DT 0.63900 0.99638 H0 is accepted
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