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Abstract: The opportunistic exchange of information between vehicles can significantly contribute to
reducing the occurrence of accidents and mitigating their damages. However, in urban environments,
especially at intersection scenarios, obstacles such as buildings and walls block the line of sight
between the transmitter and receiver, reducing the vehicular communication range and thus harming
the performance of road safety applications. Furthermore, the sizes of the surrounding vehicles
and weather conditions may affect the communication. This makes communications in urban V2V
communication scenarios extremely difficult. Since the late notification of vehicles or incidents can
lead to the loss of human lives, this paper focuses on improving urban vehicle-to-vehicle (V2V)
communications at intersections by using a transmission scheme able of adapting to the surrounding
environment. Therefore, we proposed a neuroevolution of augmenting topologies-based adaptive
beamforming scheme to control the radiation pattern of an antenna array and thus mitigate the
effects generated by shadowing in urban V2V communication at intersection scenarios. This work
considered the IEEE 802.11p standard for the physical layer of the vehicular communication link. The
results show that our proposal outperformed the isotropic antenna in terms of the communication
range and response time, as well as other traditional machine learning approaches, such as genetic
algorithms and mutation strategy-based particle swarm optimization.

Keywords: antenna array; genetic algorithm (GA); intelligent transport systems (ITS); neuroevolution
of augmenting topologies (NEAT); vehicle-to-vehicle (V2V) communications

1. Introduction

Real-time communications between vehicles through vehicular ad hoc networks
(VANETs) and intelligent transport systems has been proposed as a possible solution to
the increasing number of traffic accidents that has concerned public health officials in
recent years [1]. In these systems, key information, such as vehicle speed, acceleration, and
position, is periodically transmitted in a two-way manner, in a process known as beaconing,
allowing nearing vehicles to be well aware of each other [2].

Vehicle-to-vehicle (V2V) communications is not, however, without problems at in-
tersections [3,4]. In scenarios with too many transmitting vehicles, the channel can get
overloaded, and consequently, packets can be lost [5]. One could mitigate this by lowering
the rate at which packets are transmitted, but this creates another set of problems, such as

Sensors 2021, 21, 2956. https://doi.org/10.3390/s21092956 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1590-9877
https://orcid.org/0000-0002-3996-0004
https://orcid.org/0000-0003-3461-4484
https://orcid.org/0000-0003-1622-3180
https://doi.org/10.3390/s21092956
https://doi.org/10.3390/s21092956
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21092956
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21092956?type=check_update&version=1


Sensors 2021, 21, 2956 2 of 16

widening the discrepancy between the real and estimated position of near cars [6]. Fur-
thermore, shadowing caused by buildings and other objects that obstruct the line of sight
(LOS) communication significantly reduces the transmission range, especially at urban
intersections [7,8].

The previous problems can be alleviated through beamforming, that is directing the
radiation beams in relevant directions, where vehicles can be located [9,10]. In this work,
we used beamforming by generating radiation patterns that can overcome obstacles at
urban intersections, increasing the range of communication in this type of scenario.

Some research works that have dealt with the presented problems examined the use
of roadside units (RSUs) as relay nodes for the communication between the cars [5,8].
However, this solution is too costly, making it impossible to deploy at a large scale. Further-
more, most of the literature regarding RSUs is concerned with the optimization of coverage
and cost [11,12], neglecting the minimization of a key aspect in road safety applications:
communication delay. Even in works where the position of the RSUs is optimized to
decrease the communication delay [13,14], results are not satisfactory regarding road safety
applications in dense scenarios.

Unlike RSUs, beamforming does not use relay nodes that can get overloaded in dense
scenarios, and thus can provide a communication link with less delay. The main concern
in beamforming is finding an algorithm that can calculate the optimal antenna excitation
pattern that generates the beam shapes that best adjust to the car’s surroundings.

1.1. Related Work

V2V communications rely on the IEEE 802.11p radio access technology [15]. This
technology has been specifically designed for the vehicular environment and adopted by
the European Telecommunication Standards Institute (ETSI) for supporting the exchange of
cooperative awareness messages (CAMs) [2] and decentralized environmental notification
messages (DENMs) [16]. On the one hand, CAMs are regularly transmitted by vehicles to
provide information about their movement status. The information included in CAMs not
only helps vehicles maintain connectivity with their neighbors, but also supports high-level
road safety applications. On the other hand, DENMs are generated when a potential risk is
detected in order to notify surrounding vehicles about the particular situation. DENMs
provide support to event-driven safety applications. Since this work focuses on both the
physical layer of V2V communications and safety applications, the default specifications
of the IEEE 802.11p standard are adopted, which are a carrier frequency of 5.9 GHz, a
transmission rate of 6 Mbps, and a control channel (CCH) of 10 MHz [15].

The problem of shadowing in V2V-intersection scenarios has been usually addressed
by using relay nodes [8], such as RSUs, in order to improve the connectivity in critical
areas. For instance, References [11,12] focused on covering as much area as possible by
deploying a minimum number of RSUs because of the low market penetration of V2V-
enabled vehicles and the deployment cost of RSUs. However, the delay permitted for road
safety applications was not considered by these works. On the contrary, in [13,14], the
RSU placement problem was addressed as an optimization problem in order to minimize
the delay, but even so, the values achieved did not satisfy the requirements of road safety
applications. In addition, RSUs are not adaptable to changes in their surroundings. This
lack of adaptability significantly affects the performance of systems based on RSUs. In
this context, the use of beamforming may lower the delay for road safety applications and
increase the adaptability to the surroundings.

The problem of using RSUs has been noted, and some investigations have focused
on optimizing beam shapes for urban V2V communications. For instance, Reference [17]
presented preliminary results on optimizing values for a 4× 4 antenna array for urban
V2V communications using GA, and it was shown to outperform the baseline isotropic
antenna. Similarly, in [18], the values of a 4× 4 antenna array were optimized by using
particle swarm optimization (PSO) and interpolating the results for unknown positions.
This method has also been shown to outperform an isotropic antenna.



Sensors 2021, 21, 2956 3 of 16

1.2. Contributions and Organization of the Paper

In this manuscript, we propose a neuroevolution of augmenting topologies (NEAT)-
based adaptive beamforming scheme to increase the communication range in V2V-intersection
scenarios susceptible to shadowing. Due to NEAT being an unsupervised machine learning
technique, its performance is compared with other such algorithms, in particular PSO and
genetic algorithm (GA) approaches, as well as to a baseline isotropic antenna. Beamforming
is one of the areas where not much is known about the search space, but the objective is
clear. Several works have focused on generating and optimizing beam shapes using GAs,
showing good results with different types of antenna arrays, e.g., linear [19,20], planar [21,22],
T-shaped [23], and 3D arrays [24]. The main goal in [19–23] was to minimize the side lobes’
power, while in [24], the desired beam shape was generated. The specific beam shapes’
generation has been required in mobile communications, in order to adapt to the position of
users. Therefore, smart antennas’ control has also been assisted by GA and PSO [25].

In contrast, NEAT uses genetic algorithms to train both the weights and topologies
of neural networks. The algorithm was originally proposed to solve the pole balancing
problem [26] and has been used in a variety of problems such as controlling robotic arms,
learning countermeasures in fighting games, and generating dynamic congestion control
algorithms for the transmission control protocol [27–29]. The success of NEAT in a variety
of problems can be attributed to the capacity the algorithm has to generalize solutions to
complex problems.

As can be seen, there is a clear lack of work done in the area of using beamforming
in V2V communications to improve communications in urban scenarios, and there are
clear reasons to work in this area. In this work, we looked to solve this problem by
using algorithms that learn the antenna excitation from its surroundings. In particular,
we employed genetic algorithms (GAs) and neuroevolution of augmenting topologies
(NEAT). The algorithms were trained and tested in different simulation scenarios focused
in urban V2V communications. The main contributions of this manuscript are summarized
as follows:

1. We show the positive impact of using evolutionary algorithms with beamforming in
urban V2V communication scenarios to learn beam shapes according to the surround-
ing environment.

2. We propose the use of a neuroevolution algorithm to optimize beam shapes with
beamforming for V2V communications in urban scenarios. Unlike other machine
learning approaches, such as GA and PSO, NEAT does not require interpolating
previously visited positions, since the artificial neural networks take any position as
an input.

3. Beamforming with NEAT outperforms the baseline isotropic antenna, as well as beam-
forming optimized with MSCPSO and GA, in terms of the average response time and
the communication range, which are of vital importance for road safety applications.

The remainder of the work is structured as follows. Section 2 presents the details of
the models used for the analysis and the evaluations of the proposed schemes. Section 3
describes the optimization algorithms implemented in the work, whereas Section 4 depicts
the results and respective analysis. Finally, conclusions are presented in Section 5.

2. Methods and Materials

The following section presents details about the channel model and antenna array
used for the simulations.

2.1. Channel Model

Urban environments are characterized by the presence of various obstacles that de-
teriorate the performance of V2V communications, especially for vehicles equipped with
isotropic antennas in intersection scenarios. To solve this problem, beamforming could be
applied to adapt the beam shapes to the context of a specific surrounding environment.
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Different algorithms are used to adapt the beam shapes to the surrounding environ-
ment. The algorithms are trained through simulations of urban environments. A channel
model for urban V2V communications is necessary for the simulations, since this type
of environment has many peculiarities that differentiate it from other communication
environments. Typically, the channel model presented in [30] is used for urban V2V com-
munications, but [31] presented an improved version of the channel model, which was
adopted in this work to estimate the channel realizations. The following equations describe
the channel model used for the simulations,

G(dt, dr)dB = 10 log10(m
2) + 10 log10

((
g1

λ

4π(dt + dr)

)2

︸ ︷︷ ︸
single reflections

+
(

gN
2

λ

4π(dt + dr)

)2

︸ ︷︷ ︸
multiple reflections

)
+ Ψσ, (1)

where:

N = max

[
2

√
dtdr

wtwr
− 1, 0

]
, (2)

dt and dr are the distances to the intersection center as shown in Figure 1, m is an offset
present due to the differences in antenna height, and λ is the wavelength for the transmitted
signal. Besides, there are single-order and high-order reflections that contribute to the
received power. These reflections are represented by g1 and g2, where g1 is the mean
effective amplitude gain from single-reflection interactions and g2 is the mean effective
amplitude gain from multiple-reflection interactions. wt and wr are the road width for the
transmitting and receiving vehicles, respectively; and Ψσ is needed to model the large-scale
fading as multiple Gaussian processes, with parameter σ, for each communication link and
iteration. Finally, the values g1, g2, m, and σ were estimated from the measurements in [31].

Figure 1. Vehicle-to-vehicle (V2V)-intersection environment.

2.2. Antenna Array

There are several ways to generate different beam shapes. In the following work, this
was achieved by using a uniformly spaced planar array composed of several isotropic
antenna. For this type of array, the array factor (AF) is expressed as,

AF(θ, φ) =
n−1

∑
m=0

n−1

∑
i=0

Iim exp(jk sin θ(i∆x cos φ + m∆y sin φ)), (3)

where n is the number of isotropic antennas on each side of the array. Iim is the output
power of each antenna in the array, which is a complex value that can be decomposed
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as Iim = Aimejφim , with amplitude Aim and phase φim for each of the antennas. Since the
array is uniformly spaced, there is a constant separation between antenna elements in each
direction, represented by ∆x and ∆y. θ is the elevation angle perpendicular to the planar
array. When an algorithm optimizes the beam shape, Aim and φim are the parameters that
it can control, since the beam shape itself cannot be directly controlled by it.

By using the AF given in Expression (2), the radiation pattern for the antenna array at
an angle φ and an elevation angle θ, Y(θ, φ), can be computed as,

Y(θ, φ) = R(θ, φ)AF(θ, φ). (4)

where R(θ, φ) is the radiation pattern of a single antenna in the array. For an isotropic
antenna, the value for R is uniform across all angles. Using this, the radiation pattern at a
given angle is proportional to the value of the AF in the same direction:

Y(θ, φ) = AF(θ, φ). (5)

During the simulation, the previous expression was used to compute the value for the
radiation pattern at a given direction.

3. Optimization Methods

The following section exposes the details for the optimization methods. Firstly, the
optimization problem is presented. Then, the details about the genetic algorithm and
how to interpolate positions that were not used during training are illustrated. The NEAT
algorithm is shown and explained in the final section.

3.1. Optimization Problem

From Figure 1, we can see that the shape of the beam needs to extend as much as
possible in the four directions determined by both streets, in order to maximize, in these
directions, the received signal power Pi, with i ∈ {1, 2, 3, 4}. Therefore, the optimization
problem can be formulated as:

Pi = arg max
Pi

(
4

∑
i=1

Pi
(

Aj, φj
)
− µ

(
max

l
Pl
(

Aj, φj
)
−min

n
Pn(Aj, φj)

))
, (6)

where l, n ∈ {1, 2, 3, 4} : n 6= l, and µ is a variable that controls the importance of
distributing the power equally. Note that the algorithm must learn to control the values of
the amplitude Aj and phase φj of the jth element of antenna in an array with k elements.
Consequently, the optimization problem to solve can be reformulated as:

Âj, φ̂j = arg max
Aj ,φj

subject to
∑k

m=1 Am<A

(
4

∑
i=1

Pi
(

Aj, φj
)
− µ

(
max

l
Pl
(

Aj, φj
)
−min

n
Pn(Aj, φj)

))
, (7)

where Âj and φ̂j are the optimal amplitudes and phases for the array, respectively.

3.2. Genetic Algorithm

The main operations related to GA are the creation of the first generation of individuals,
crossover, and mutation. In the rest of the section, the selection for each of these operations
is presented based on [32].

For the creation of the first generation of individuals, there is no initial guess for the
amplitudes or phases, since there is no notion of where the optimal solution may be. The
diversity of the initial generation was desired; thus, the amplitude and phase values were
obtained from a uniform distribution. However, a constant power for the antenna array
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was desired; thus, the amplitudes must be normalized by the total power, from which the
final values for the amplitudes in the first generation are given by:

Ãj(0) = Aj(0)
P2

∑k
i=1 Ai(0)2

, (8)

where Ãj(0) is the value for the amplitude of the jth antenna obtained in the first generation,
Aj(0) is the value for the amplitude of the jth antenna resulting from the first generation
before normalization, and k is the number of antennas in the array. The antenna array as a
whole has a constant output power due to a fixed amount of power being provided to the
array by the source. This power is denoted as P.

For the crossover operation, the single point crossover [32] was employed over the
array of values for the antenna array. The only special consideration when doing the
crossover was that the crossover points for the phase and amplitude were used separately;
thus, the crossover point for both values may be different. When using crossover schemes,
there is a chance that the total power of the antenna array is not P; thus, Equation (7) must
be used once again to normalize the total power.

For the mutation process, a Gaussian distribution was used for every phase and the
amplitude values [33]. This is typically used for mutation when the values are not binary
coded, as was the case, since floating values were used. This means that the values for an
amplitude and a phase and in each iteration are updated as follows:

φmut
j = φj +N (0, σφ), (9)

Amut
j = Aj +N (0, σA), (10)

where φmut
j and Amut

j are the mutated values for both the phase and amplitude and σφ and
σA are the standard deviation for both values. Once again, the mutation may result in a
total power different than P; thus, Equation (7) must be used to normalize the total power.

A final consideration is that elitism is used in training, meaning that a small part of
the best performing individuals is copied into the next generation unchanged. This process
improves performance since the GA does not need to find previously discarded solutions
once again.

3.3. Interpolation

The GA was used to find the radiation pattern at a given point in the streets. Evidently,
it is not possible to calculate the radiation pattern for every position in the streets; thus, a
methodology was required to determine the radiation pattern for positions on which the
GA had not been trained.

The approach used in this work consisted of training the GA on a rectangular grid,
with constant values for dx and dy, the separation between points in the grid, and then,
interpolating unknown positions from the ones on which the GA had been trained; see
Figure 2.

In Figure 2, the red circles are the positions at which the GA was trained, which were
separated from each other at dx and dy, respectively. To get the radiation pattern for a
position (x̂, ŷ), on which the GA had not been trained, an interpolation process was used.
The radiation pattern for the new position (x̂, ŷ), was based on the values of four positions,
as can be seen in Figure 3.

Figure 3 is a zoomed-in version of Figure 2, where the car represents the new position
(x̂, ŷ), and the four red points are the positions used for the interpolation. As can be
seen from Figure 3, the four points are at positions (x1, y1), (x1, y2), (x2, y1), and (x2, y2).
Point (x1, y1) is denoted by p1, (x1, y2) by p2, (x2, y1) by p3, and (x2, y2) by p4. Since
these four points were trained with the GA, each of the four points had pairs of values
{(Ai

j, φi
j)}j∈{1,2,...k}, where i denotes the point, thus i ∈ {1, 2, 3, 4}, and k is the number of

antenna in the antenna array.
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Figure 2. Training and interpolating the genetic algorithm (GA).

Figure 3. Points used for the interpolation procedure.
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Since the value for the antenna only depends on the values of the amplitude and
phase, the antenna of each point can be represented via the following notation:

pi
j = Ai

je
φi

j . (11)

With the previous notation, the value of the new position, p̂, can be written as a linear
combination of the values of pi. Thus, the values for p̂ results in:

p̂j =
4

∑
i=1

wi pi
j. (12)

The values for wi should depend on how close the antenna is to the new position. The
closer the antenna, the larger the value for wi is. In order to achieve this relationship, the
following expressions are employed:

wx
i = 1− |x(pi)− x̂|

x1 − x0
, (13)

wy
i = 1− |y(pi)− ŷ|

y1 − y0
, (14)

where x(pi) and y(pi) are the x and y positions for the point pi, respectively. With this
expression, the weights are inversely proportional to the distance between the antenna and
the new position. The previous weights are used to calculate wi as wi = wx

i wy
i . Namely,

Equation (11) must be written as:

p̂j =
4

∑
i=1

wx
i wy

i pi
j, (15)

and as mentioned, pj
i is given in Equation (10), wx

i is given in Equation (12), and wy
i is

given in Equation (13). A final consideration is that maintaining the same total power for
the antenna array regardless of the position was desired because the output power of the
antenna should be constant. To this end, the value obtained in Expression (14) must be
normalized by a constant total power P that is used for every other position. Thus, the
final values for the amplitudes denoted p̃j are given by:

p̃j = p̂j
P2

∑k
i=1 | p̂i|2

, (16)

which ensures that the total power for the antenna array is P regardless of the position.

3.4. Neuroevolution of Augmenting Topologies

As previously stated, NEAT relies on training various neural networks through the
GA. Due to mixing both algorithms and including different techniques, such as speciation
during training, NEAT has a large number of variables. Here, important details about the
variables are presented.

The activation function used for the neural network was fixed as the sigmoidfunction,
which is the most common activation function in neural networks due to its generalization
capability. The bias and weights for each of the layers of the neural network were trained
through the GA. Both the bias and weights had minimum and maximum values, which
were hyper-parameters, or tunable parameters, for the training/testing model. The rate
probability and rate of mutation for the parameters were also the hyper-parameters for
the model.

Each neural network started as a fully connected neural network with 2 input neurons,
corresponding to the position of the car relative to the center of the intersection, no hidden
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layers, and 32 output neurons, corresponding to 16 amplitudes and 16 phases for each of
the antennas in a 4× 4 array.

The fitness for each of the neural networks was given by the value to maximize in
Expression (6). The score was computed from one of two scenarios, either by evaluating
from a deterministic equidistant distribution of points in the simulation or by evaluating
from a random distribution of points in the simulation. This was also considered a hyper-
parameter of the model. The probabilities to add or delete nodes and to add or delete
connections were also hyper-parameters for the model.

4. Results and Discussion

In this section, the results for the work are carefully presented. The section starts by
presenting the simulation scenario, as well as the parameters used for the communication
channel and the different algorithms. To train the different machine learning algorithms,
different positions from the previously presented simulation scenario were used. The
output of the antenna array (which was obtained by properly combining each antenna
output) for each given position was computed by the algorithm, then the score was
computed by using Equation (7), and subsequently, the algorithms were updated in an
unsupervised manner. Finally, a carefully evaluation of the results in terms of several
metrics is presented.

4.1. Simulation Scenario and Parameters

The general simulation scenario is presented in Figure 4. The sections in the white rep-
resent the roads in the simulation scenario, and the sections in blue represent the buildings.
The car in Figure 4 represents a possible position for the vehicle in the simulation scenario.

Figure 4. Simulation scenario.

Because of the symmetries present in the simulation scenarios, obtaining results from
the left side of the horizontal lane was, on average, the same as obtaining results from
every position in the simulation scenario. Taking into account this particularity, all the
positions for the cars were considered on the left side of the horizontal road.

Furthermore, as the work focused on increasing the communication range for urban
V2V communications, the evaluation of the model was done by only considering a single
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transmitting and receiving vehicle. This simplification had the downside of not taking
vehicular density into account. The reason vehicular density was not taken into account
was that the work focused on comparing different communication schemes in the same
simulation scenario. While taking the vehicular density into account would make the
results more accurate, it would affect the communication schemes similarly, and thus, the
comparison would be similar. Besides, the complexity of a simulation setup that considers
the impact of the vehicular density is much greater, and consequently, the interpretation of
the results would also be, so this analysis was outside the scope of this research work.

Nevertheless, the effect of vehicular density in the resulting performance is an inter-
esting point to consider, and thus, it is proposed as future work. To consider this effect,
the simulation scenario should be extended to consider multiple vehicles communicat-
ing at the same time, and consider the link layer protocols specified in the IEEE 802.11p
standard [15]. Interestingly, considering vehicular density might benefit learned beam
shapes even further, since models could learn to better utilize the channel by separating it
spatially.

As mentioned previously, a channel model for urban V2V communications presented
in [31] was used for our observations. This channel model had a number of different
parameters that related to the shape of the intersection and were used in Equation (1). Note
that the simulation scenario presented in Figure 4 was similar to the X-junction presented
in [31]. Consequently, the following parameters were adopted in the work.

The value for the road width presented in Table 1 was calculated by considering the
value for the lane width of 4 m presented in [34]. In this work, a road with two lanes and
side walks was considered. The side walks had a width of 1 m, which resulted in a road
width of 10 m.

Table 1. Parameters for the simulation scenario.

Parameter Value

g1 0.12 [31]
g2 0.58 [31]
m 4.18 dB [31]
σ 4.28 dB [31]

Road width 10 m [34]

As previously noted, this work considered the IEEE 802.11p standard [15] for the
physical layer of the vehicular communication link. Table 2 summarizes the key parameters
considered for the communication link.

Table 2. Parameters for the communication link.

Parameter Value

Frequency 5.9 GHz [15]
Data rate 6 Mbps [15]

Beacon rate 10 beacon/s [15]
Tx output power 20 dBm [31]

Rx sensitivity −67 dBm [31]

The Rx sensitivity had a slightly higher value than the one presented in [31], which
was 23 dBm. This was because the value presented in [31] considered a packet error rate
of 10%, which was too high for safety applications in V2V communications. Finally, the
algorithms had different hyper-parameters that had to be tuned for successful training,
which are illustrated in Table 3.
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Table 3. Parameters used for the evaluated algorithms.

Model Parameter Value

GA

Individuals 500
Generations 150

dx 1 m
dy 1 m
σ2

A 10.0
σ2

φ 0.5
Crossover probability 0.8
Mutation probability 0.3

NEAT

Population size 150
Generations 300

Activation function sigmoid
Input nodes 2

Output nodes 32
Probability to add connection 0.7

Probability to delete
connection 0.3

Probability to add node 0.4
Probability to delete node 0.2

As mentioned, most of these hyper-parameters were tuned to increase the performance
of the respective models. The tuning of the hyper-parameters was done via extensive
computer simulations. The training of the model, as well as the performance comparison
of the evaluated metrics are presented below.

4.2. Performance Evaluation

Taking into account the simulation scenario and the hyper-parameters presented,
the following section focuses on presenting and analyzing the results obtained from
the simulations.

It is worth mentioning that in [18], MSCPSO was used to optimized the parameters of a
4× 4 antenna array using PSO, and the results of the unknown positions were interpolated.
However, the latter was evaluated using different restrictions compared to the ones in this
manuscript. In particular, the authors in [18] restricted the position of the vehicle in the
road, but this restriction was discarded in our manuscript since for safety applications,
every possible position is important. New results for MSCPSO were hence computed in
this manuscript.

Initially, the results for the average power received in each of the four roads (P1, P2,
P3, and P4) are exposed in Table 4. These powers are expressed in dBm.

Table 4. Received power in each road for the isotropic antenna case and beamforming for
different algorithms.

Antenna P1 (dBm) P2 (dBm) P3 (dBm) P4 (dBm)

Isotropic antenna −112.82 −112.82 −114.16 −124.60
Beamforming with MSCPSO −105.22 −105.82 −105.07 −110.07
Beamforming with GA [17] −89.36 −89.30 −108.55 −109.03
Beamforming with NEAT −74.24 −74.30 −96.35 −95.89

As can be seen, by using beamforming with any of the algorithms outperformed using
an isotropic antenna. The values showed that the performance of the GA and MSCPSO was
similar in the vertical roads (P3 and P4), but the GA outperformed MSCPSO significantly in
the horizontal roads (P1 and P2). On the other hand, NEAT outperformed both algorithms
considerably for all four roads. While the GA and MSCPSO use the interpolation of known
positions to generate the output, NEAT trains a neural network that can output the values
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for any position. This has proven to make NEAT a flexible algorithm that can learn to
generalize in various and complex learning tasks.

Another interesting result was the percentage (%) of the positions in which each of
the algorithms outperformed the isotropic antenna in each of the four roads. The results
were computed by sampling 104 positions in order to obtain representative outcomes and
comparing the received power for the isotropic antenna and beamforming with each of
the algorithms. The results presented in Table 5 show that all of the presented algorithms
using beamforming outperformed the isotropic antenna in most scenarios. Even though
Table 4 seems to indicate that the performances of the GA and MSCPSO were similar
for two of the roads (P3 and P4), Table 5 shows that the GA was superior compared to
MSCPSO in all scenarios. This observation seems to indicate that even though, on average,
the performance was similar for both algorithms, MSCPSO tended to have much more
extreme values when compared to the GA. Table 5 also shows that NEAT outperformed the
isotropic antenna in all simulation scenarios. This, once again, was explained by the ability
of NEAT to learn general solutions and not relying on the interpolation of known positions.

Table 5. Percentage of scenarios where the antenna array outperforms the isotropic antenna for
different algorithms.

Antenna P1 (%) P2 (%) P3 (%) P4 (%)

Beamforming with MSCPSO 72.80 69.29 95.25 81.11
Beamforming with GA 99.51 99.48 98.34 96.09

Beamforming with NEAT 100 100 100 100

To expand our results, Figure 5 shows the heat maps of the received power expressed
in dBm for the isotropic antenna (top left) and beamforming with MSCPSO (top right),
the GA (bottom left), and NEAT (bottom right). The heat-maps visually demonstrate
that NEAT had the highest average power reaching the roads, which was reflected in a
brighter color in its respective heat map, while the isotropic antenna had the lowest power.
The isotropic antenna especially seemed to struggle at the road perpendicular to the car
position, which was expected since there was no LOS component and the power was
equally distributed in all directions. In comparison with the isometric antenna, both the
GA and NEAT improved the power that reached this road by learning to generate beam
shapes that focused the power in this specific direction. Meanwhile, MSCPSO depicted
significant improvements over the isotropic antenna; however, its results were worse than
the GA and NEAT, which was reflected in a darker shade in all four roads overall.

As mentioned, the main focus of the work was for safety applications. Because of
this, one very important result was the amount of time between a vehicle receiving a
packet and a possible collision. This was measured by generating 104 positions for the
car transmitting the packet, by calculating the maximum distance from the intersection
where a car moving perpendicular to the transmitting car would receive the packet, and by
dividing this distance by the velocity of the car was moving. This relationship is denoted
as maximum response time. Figure 6 shows the curves obtained by the procedure that was
previously described.

In Figure 6, solid lines represent the mean for the maximum response time calculated
for all the positions. The dotted lines represent the value for the worst case scenario. Curves
and the respective minimum values for the isotropic antenna and beamforming antenna
array optimized with NEAT, the GA, and MSCPSO are presented. It can be seen in Figure 6
that the average maximum response time was largest for NEAT, followed by GA, MSCPSO,
and finally, by the isotropic antenna. This shows that, on average, the performance of NEAT
was the best, whilst the result for the isotropic antenna was the worst. This is coherent with
the results in Tables 4 and 5, where a similar trend can be appreciated.
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Figure 5. Heat map for the isotropic antenna (top left), beamforming with mutation strategy-based particle swarm opti-
mization algorithm (MSCPSO) (top right), beamforming with the GA (bottom left), and beamforming with neuroevolution
of augmenting topologies (NEAT) (bottom right).

It is interesting to note that even though the average value was greater for the GA
than for MSCPSO, the GA had a much larger standard deviation, which resulted in a
lower minimum value than MSCPSO. It is important to take this into consideration, since
for safety applications, this type of border scenario may result in an accident, which was
exactly what the work was looking to tackle.

MSCPSO had the highest minimum value for the maximum response time, followed
closely by NEAT. This was because MSCPSO had by far the lowest standard deviation for
the response time in every position. This means that the algorithm managed to reach long
distances at any position in the road, which is important in safety applications. However,
NEAT achieved similar minimum values with a slightly larger average value, which in-
dicates that NEAT performed better in most scenarios. Furthermore, both beamforming
with NEAT and MSCPSO achieved a minimum performance similar to the average perfor-
mance of the isotropic antenna. This shows that, even in the worse possible scenario, both
algorithms performed similarly to an isotropic antenna on average.

The results show that NEAT and MSCPSO have the best performance for road safety
applications, whilst GA and isotropic antenna have much worse performance due to their
larger standard deviation and lower average value in the case of isotropic antenna.
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Figure 6. Maximum response time for the different evaluated models.

5. Conclusions

In this article, the use of NEAT along with beamforming was proposed for V2V
communications in urban scenarios. The algorithm outperformed other evolutionary
algorithms, in particular the GA and MSCPSO, as well as the isotropic antenna in terms of
received power and average maximum response time. NEAT also showed similar worse
case scenario performance for the maximum response time as MSCPSO, achieving a similar
performance to the average values for the isotropic antenna.

The results also showed that NEAT outperformed the isotropic antenna in terms of
received power in every position of the simulation. This indicates that using beamforming
with NEAT is a net gain in terms of received power, compared to the common isotropic
antenna. NEAT also outperformed GA and MSCPSO in terms of average received power,
with a difference of over 14 dBm in every direction.

As future work, it would be interesting to try more neuroevolution-based algorithms
to further increase the performance of the antenna array. The models could also be tested
in real-life scenarios, analyzing the difference in performance between the simulations and
real scenarios, while also analyzing the feasibility of employing the different models in
real-time urban V2V communications. Furthermore, obtaining results in more realistic
scenarios, such as different vehicular densities, is important for real-life applications, and
thus proposed as future work.
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