
Citation: Arrué, L.; Cigna-Méndez,

A.; Barbosa, T.; Borrego-Muñoz, P.;

Struve-Villalobos, S.; Oviedo, V.;

Martínez-García, C.; Sepúlveda-Lara,

A.; Millán, N.; Márquez Montesinos,

J.C.E.; et al. New Drug Design

Avenues Targeting Alzheimer’s

Disease by

Pharmacoinformatics-Aided Tools.

Pharmaceutics 2022, 14, 1914.

https://doi.org/10.3390/

pharmaceutics14091914

Academic Editor: David Barlow

Received: 5 August 2022

Accepted: 6 September 2022

Published: 9 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Review

New Drug Design Avenues Targeting Alzheimer’s Disease by
Pharmacoinformatics-Aided Tools
Lily Arrué 1 , Alexandra Cigna-Méndez 2, Tábata Barbosa 3, Paola Borrego-Muñoz 4, Silvia Struve-Villalobos 5,
Victoria Oviedo 2, Claudia Martínez-García 6, Alexis Sepúlveda-Lara 5, Natalia Millán 3,
José C. E. Márquez Montesinos 7 , Juana Muñoz 3, Paula A. Santana 2 , Carlos Peña-Varas 8 , George E. Barreto 9,
Janneth González 3 and David Ramírez 8,*

1 Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y
Postgrado, Universidad Católica del Maule, Talca 3480094, Chile

2 Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile,
Santiago 8910060, Chile

3 Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana,
Bogotá 110231, Colombia

4 Escuela de Medicina, Fundación Universitaria Juan N. Corpas, Bogotá 110311, Colombia
5 Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile,

Temuco 4780000, Chile
6 Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia,

Bogotá 111321, Colombia
7 Center for Bioinformatics, Simulation and Modeling (CBSM), Universidad de Talca, Talca 3460000, Chile
8 Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción,

Concepción 4030000, Chile
9 Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
* Correspondence: dramirezs@udec.cl

Abstract: Neurodegenerative diseases (NDD) have been of great interest to scientists for a long time
due to their multifactorial character. Among these pathologies, Alzheimer’s disease (AD) is of special
relevance, and despite the existence of approved drugs for its treatment, there is still no efficient
pharmacological therapy to stop, slow, or repair neurodegeneration. Existing drugs have certain
disadvantages, such as lack of efficacy and side effects. Therefore, there is a real need to discover
new drugs that can deal with this problem. However, as AD is multifactorial in nature with so many
physiological pathways involved, the most effective approach to modulate more than one of them
in a relevant manner and without undesirable consequences is through polypharmacology. In this
field, there has been significant progress in recent years in terms of pharmacoinformatics tools that
allow the discovery of bioactive molecules with polypharmacological profiles without the need to
spend a long time and excessive resources on complex experimental designs, making the drug design
and development pipeline more efficient. In this review, we present from different perspectives how
pharmacoinformatics tools can be useful when drug design programs are designed to tackle complex
diseases such as AD, highlighting essential concepts, showing the relevance of artificial intelligence
and new trends, as well as different databases and software with their main results, emphasizing the
importance of coupling wet and dry approaches in drug design and development processes.

Keywords: Alzheimer’s disease; drug design; computational polypharmacology; bioinformatics;
pharmacoinformatics; multitarget directed ligands; protein–protein interaction network; pharmacophore

1. Introduction

The World Health Organization (WHO) defines Alzheimer’s disease (AD) as a neurode-
generative disease, which is of unknown etiology characterized by cognitive impairment of
memory and cognitive function [1,2], caused by a multiplicity of conditions or pathologies
that lead to progressive and irreversible neurodegeneration process [3].
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In this context, different hypotheses have been developed to define its physiopatho-
logical character. In recent decades, two neuropathological mechanisms have been studied
and characterized in the brains of AD patients. First, the formation of amyloid plaques
involving amyloid-β (Aβ) aggregation and deposition [4], and second, the formation of
neurofibrillary tangles (NFTs) due to hyperphosphorylation and aggregation of tau pro-
tein [5]. In addition, the loss of connections between neurons in the brain is also involved [6]
(Figure 1). Aβ and NFTs are estimated to begin about 10–20 years before cognitive function
impairment manifests [7,8], in line with the most relevant hypotheses for this disease.

Figure 1. Pathophysiology of the main hypotheses of Alzheimer’s disease. Created with BioRender.com.

1.1. Main Hypotheses Currently Approved for AD
1.1.1. Cholinergic Hypothesis of AD

This is the first hypothesis, which suggests that a dysfunction of the cholinergic
neurons, which contributes significantly to the cognitive failure observed in AD, is the
cause of the disease. However, some studies also claim that acetylcholinesterase (AChE)
activity is up-regulated or unaffected in patients with mild cognitive impairment or early
AD, leading to question the validity of this hypothesis [9].

1.1.2. Amyloid Hypothesis of AD

Aβ peptide is produced by abnormal cleavage of amyloid precursor protein (APP)
(a transmembrane glycoprotein expressed in different cells, including neurons and glia).
Under normal physiological conditions, the cleaved products of APP are soluble peptides
easily eliminated by the body. However, in AD, APP is cleaved by α-secretase, β-secretase,
and γ-secretase, generating insoluble peptides which are then secreted by neurons into the
extracellular space where senile plaques are formed due to accumulation, oligomerization,
and deposition of the Aβ peptide, promoting a neuroinflammatory process and generating
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structural damages [10]. Although this hypothesis has been supported for several years,
there is controversy regarding the details of amyloid pathology and its relationship with
AD because some patients have been found with amyloid pathology but without AD
symptoms [11]. Along with this, the different oligomers produced by the deficient activity
of the secretase have been investigated, where some of the different sizes, in different
concentrations, and with different outcomes in patients have been discovered. Initially,
it was believed that beta-amyloid consisted of a maximum of 42 amino acids [12], but in
2006 Lesné et al., had published an article reporting the finding of an Aβ*56 oligomers,
which would have direct consequences on the memory function of test mice [13]. Despite
the efforts of different scientists to elucidate this point, some of them have not been able to
reproduce results on this oligomer, and others have found contrasting answers [14]. Re-
search remains to be performed on the incidences of the length of the oligomer, its solubility
characteristic, its concentration in different organisms depending on the pathology, and
its relationship with Alzheimer’s disease to be able to restructure this hypothesis in an
effective way.

1.1.3. Tau Hypothesis of AD

Tau protein is found mainly in axons. Its function relates to the binding of micro-
tubules to stabilize the neuronal cytoskeleton. Under AD, the tau hyperphosphorylation
form decreases its affinity for microtubules, causing it to aggregate in an insoluble form
(known as paired helical filaments), resulting in the transformation of tau into NFTs. In the
formation of NFTs, the hyperphosphorylated tau disrupt microtubule function, which leads
to impaired axonal transport, blocking the transport of nutrients and essential molecules
within neurons [15].

1.2. Other Hypotheses and New State of the Art in Pathophysiology of AD

In addition to the pathophysiological hypotheses that have recently been accepted
to explain the mechanisms of AD, there are several hypotheses that have gained differ-
ent weight depending on the studies they are presented. For example, hypertension
and cardiovascular diseases have been related to AD, giving rise to the angiotensin and
vascular hypothesis, respectively. The former describes the relationship between the renin–
angiotensin system, whose components are altered in AD due to its important role in blood
pressure and cardiovascular regulation [16]. The second relates to the lack of blood flow to
the brain with vascular dementia and consequent cell death, where cellular aging and brain
trauma could be risk factors for AD [17]. On the other hand, hypotheses such as oxidative
stress [18] explain how abnormalities in neuronal cells would increase under this condition,
which leads in many of these cases to some apoptotic mechanisms associated with cognitive
dysfunction and dementia. Moreover, some hypotheses are more related to environmental
and lifestyle factors, such as the mercury hypothesis [19], which explains that mercury
contamination of the body is capable of causing many of the various alterations present in
Alzheimer’s patients. Likewise, the increase in cholesterol at the brain level [20] and the
lack of vitamin D [21] are two hypotheses that would explain the dysfunctionality of the
organism that is characteristic of AD. In the case of vitamin D, its alterations can mimic
the amyloid pathways, which could also be affected by alterations in calcium levels [22],
forming other hypotheses associated with this complex disease. In recent literature, there
are also more specific hypotheses, such as the hypothesis of mitochondria-associated endo-
plasmic reticulum membranes [23] and how the functions located in this part of the cell
increase their expression in Alzheimer’s patients. There are also some related to exposure
to microorganisms of more biological origin or the viral hypothesis that relates the presence
of common viruses such as herpes to the development of the other pathological hypotheses
of AD [24].

All this evidence allows us to observe the complex nature of AD. There has been a
limited success (almost none) in drug development and repurposing efforts for its effective
treatment, in part due to the fact that the drug design process targeting AD has been
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flanked by a reductionist “1-target <–> 1-drug” model. So far, this approach has not
provided an effective therapeutic alternative, possibly due to the multifactorial nature of
this pathology. Therefore, there is a need to shift the focus of current AD drug discovery
research towards designing better therapeutic solutions for simultaneously targeting the
multiple pathological mechanisms responsible for the initiation and advancement of AD.
Regarding the efforts made by the scientific community in recent years to deal with this
challenge and this multifactorial disease, either from clinical treatments, drug design, and
laboratory tests (among others), it is important to note that currently, about 2880 Alzheimer-
related projects are being developed, according to the clinical trials database. As shown in
Figure 2, only half of them have been completed, 5% are active, and approximately 19%
are in the start-up phase. This shows the high interest there is currently in conducting
clinical research in this area. In these projects, several countries have taken the lead,
including the United States (1479), France (245), China (89), Canada (86), Korea (68), the
United Kingdom (67), Spain (66), and Germany (55) (Data retrieved on July 2022 from
www.clinicaltrials.gov).

Figure 2. Percentage and status of AD-related projects that have been carried out in the last two
decades according to the ClinicalTrials.gov database. Data retrieved on July 2022.

Within the complex research that aims to face this challenge, drug design by pharmacoi-
nformatics-aided tools has taken on significant relevance. Currently, several strategies,
methods, and tools have been developed to progress in this field, which can be found in
different reviews where their scopes are specified [25,26]. In this review, three strategies
to improve the pharmacological AD space are highlighted because of their relevance in
drug design as well as AD. First, Multi Target Directed Ligands (MTDLs) approach focuses
on designing drugs that simultaneously hit several relevant targets [27]. Second, drug
repurposing, which refers to revealing new uses (or purposes) for prescribed ligands or
drugs [28], and the third strategy is called systems pharmacology, which takes advantage of
the huge amount of biological data, available mathematical and pharmacology models to
propose or predict an optimal therapy with the integrative vision of the systems approach.
An analytical description of the advantages and limitations is described elsewhere [29,30].

These approaches use several computational techniques to aim their purposes, such
as molecular docking to predict the best conformational stage of a small molecule into a
macromolecule [31,32], together with virtual screening, used to predict putative bioactive
ligands from large databases of small molecules [33–35], and pharmacophore modeling,
which represents a three-dimensional ensemble of chemically defined interactions of a
compound with its possible receptor [36,37]. This concept is commonly applied to perform
ADME-Tox prediction, side effects modeling, off-target prediction, target identifications,
and virtual screening campaigns. Finally, molecular dynamics simulation is one of the most
computationally expensive and time-consuming classical techniques commonly applied in
computer-aided drug design (CADD). It uses the structural information available for the
receptor and its ligand while employing a forcefield to predict the evolution of the system
along a given simulation time [38,39]. Additionally, due to the relevance of Alzheimer’s
disease within neurodegenerative diseases (NDD) and drug design, different databases

www.clinicaltrials.gov
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and software have been developed exclusively for the study of Alzheimer’s disease; some
examples of these are listed in Table 1.

Table 1. Examples of software and databases developed exclusively for Alzheimer’s disease drug
design research.

Software/Platform Description Link Reference

AlzhCPI

With HTML and CSS
technology that provides models

and important fragments for
MTDLs against AD

http://rcidm.org/AlzhCPI [40]

AlzPlatform AD-specific chemogenomics
database based on ligands http://www.cbligand.org/AD [41]

HENA
Heterogeneous network-based

dataset for
Alzheimer’s disease

https://github.com/esugis/hena [42]

NIAGADS
National Institute on Aging

Genetics of Alzheimer’s
Disease Data Storage Site

https://www.niagads.org/ [43]

2. Advances Achieved by Bioinformatics Tools in the Diagnosis of AD

One of the main difficulties in the treatment of this disease is that an effective way
to diagnose it in the early stages of the patient’s life has not yet been determined. On the
contrary, it is only possible to confirm the development of the disease post-mortem by
detecting some of the pathophysiological characteristics of AD in the brains of patients [44].
The key steps in the diagnosis of AD include consideration of the patient’s clinical history,
physical examination, neuropsychological testing, and neuroimaging. It has been studied
and concluded by L. Guzman-Martinez et al. that there are genes that confer susceptibility
to this disease and that they are related to lifestyle, being healthy living such as exercise,
balanced diet, and constant brain activity a way to mitigate the probabilities of suffering
AD [45]. Along with this, it was determined that prolonged confinement in both young
people and adults could increase the risk of suffering from this disease precisely because of
the absence of the key aspects of a healthy lifestyle [45].

A common practice in the diagnosis of AD is the use of Magnetic Resonance Imaging
(MRI). The use of these images represents a challenge, given to high similarities across stages
of dementia in AD brains, as well as with healthy brains of older people [2]. In this sense, a
way to refine this is through bioinformatics, which is being used to achieve a more accurate
AD diagnosis using MRI images without the intervention of the human eye, leading to
early diagnosis and better therapeutic efficacies. This improvement has been accomplished
by implementing deep learning (DL) technologies to identify changes that occur in the
brain even before the first symptoms arrive, such as the change of the early medial temporal
lobe, a pattern characteristic of AD caused by both amyloid-β plaques, and neurofibrillary
tangles accumulation [46]. Nevertheless, bioinformatics is not only being used for AD
diagnosis based on image analysis; the screening and identification of key genes using gene
set enrichment analysis (GSEA) are also being examined for early AD diagnosis in clinical
practice [47]. Based on functional analyses, differentially expressed genes and microRNAs
have been proposed to be closely related to AD through a comparison against pathology
databases such as the Comparative Toxicogenomics Database (CTD) [48], which integrate
large amounts of data about AD and promote the discovery of new biomarkers. Some other
AD databases are hu.MAP [49], ADNI [50], NIAGADS [43], and HENA [42].

On the other hand, clinical biomarkers such as Aβ42, T-tau, and P-tau proteins are
extracted from cerebrospinal fluid to detect the pathophysiology of AD. However, this
method is too invasive and painful for the patient. Therefore, there is a great effort to
discover biomarkers for AD diagnosis that can be detected using less invasive methods [51].
In this sense, techniques on different molecular levels, such as genomics (DNA), tran-
scriptomics (mRNA and non-coding RNAs), proteomics (proteins), and metabolomics

http://rcidm.org/AlzhCPI
http://www.cbligand.org/AD
https://github.com/esugis/hena
https://www.niagads.org/
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(metabolites), are being implemented to identify the pathways that lead to neuronal death
and the biomolecular markers associated with the AD neuropathology [52].

Omics analysis approaches are mainly focused on statistical analysis or machine learn-
ing (ML) analysis. ML analysis integrates complex datasets derived from omics techniques
in scenarios using supervised (e.g., Random Forest and Artificial Neural Network) or
unsupervised algorithms (e.g., Hierarchical Clustering, k-means Clustering, and Artificial
Neural Network), where traditional statistical methods are insufficient [52]. The use of
omics has given rise to a large number of molecular profiles and datasets, which are cru-
cial not only to an early diagnosis but also for understanding the complexity of AD and,
eventually, for creating a personalized treatment using precision medicine [52].

An irrefutable fact is that, by the time AD is detected and diagnosed, it is probably
too late to cure the patient because there is a high neurodegeneration level. For that
reason, therapies are also focused on the early detection of AD [53–55]. Although NFTs
and Aβ in the brain represent major hallmarks of NDD, therapies aiming to reduce the
amyloid have not shown any breakthrough in reversing mild cognitive impairment [3].
This background allows us to understand that there is no clear and complete statement
regarding the causality of AD [56]. Therefore, in addition to studying this aspect in depth,
it is indispensable to have a method for early diagnosis and novel therapy. Clearly, out-of-
the-box alternatives to obtain therapeutic results from a system-pharmacology drug design
perspective must be sought using data generated over the decades.

3. Current Therapeutic Strategies against AD

The treatment of this disease has been approached from different points, from un-
conventional investigations, such as alternative therapies, to classic pharmacological ones.
Table 2 shows a summary and representative description of the type of treatments that
have been carried out in the last two decades to improve the condition of this disease and
try to control it.

Table 2. Description and number of treatments against Alzheimer’s disease (Data retrieved on July
2022 from www.clinicaltrials.gov).

Treatment Type Number of
Associated Projects Description

Drug 1353
Analytical/experimental study. The patient is treated with different drugs. In
the cases reported, 105 have used donepezil, 4 rivastigmine, and 4 galantamine,

either in the absence of or in addition to other drugs and treatments.

Behavioral 425

Observational study. The patient undergoes therapies, lifestyle changes, sports,
and cognitive activities to improve memory. It may or may not be

accompanied by other types of therapies. Family therapy and
psycho-emotional support are included.

Device 263
Interventional study where devices such as transcranial alternating current
stimulation (tACS) and deep brain stimulation (DBS) are used to evaluate

possible improvements in patient responses.

Procedure 112 The patient undergoes procedures such as yoga, hypnosis, surgery,
or acupuncture.

Dietary supplement 65 New types of diets are implemented for the patient with specific supplements
such as vitamin E, curcumin, and omega 3, among others.

Considering that drugs are the most widely used method in the treatments described
above and that most of the approved drugs are small molecules, it is necessary to mention
that there are six drugs that have been approved by the U.S. Food and Drug Administration
(FDA) for the treatment of AD. These include donepezil, rivastigmine, and galantamine,
which are acetylcholinesterase inhibitors (AChEIs) preferentially used during the early
mild and moderate phases of the disease [57], and whose chemical structures are shown
in Figure 3. Unfortunately, these drugs only temporarily alleviate cognitive symptoms

www.clinicaltrials.gov
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without having an effect on the progression of this disease [58]. In advanced stages,
cholinesterase inhibitors are often combined with memantine, a non-competitive N-methyl-
D-aspartate (NMDA) receptor antagonist [59,60]. Another relevant cholinesterase inhibitor
is tacrine, the first drug approved for AD [61], which has been withdrawn from treat-
ments [62] because although it generates cognitive improvements as a palliative benefit,
it was discovered at the clinical level that it could cause hepatotoxicity [63]. This contro-
versy of having a structure that generates the desired improvements but also has strong
side effects gave rise to research into new tacrine-based derivatives that could solve this
problem [64–67].

Figure 3. FDA-approved drugs for the treatment of Alzheimer’s disease. Small molecules (tacrine,
memantine, rivastigmine, donepezil, and galantamine) and the monoclonal antibody aducanumab
(where chain A is shown in green, chain B in blue and chain C in cyan.) PDB code: 6CO3 [68].

Although these drugs cannot delay neurodegenerative progression, they temporarily
improve the cognitive function of cholinergic and glutamatergic neurotransmission [69],
improving the patient’s quality of life in a palliative way. However, they have the inconve-
nience of presenting some side effects such as gastrointestinal complications [70], muscle
problems in anesthetized patients, slow heartbeat and fainting, as well as seizures [71].

Recently (June 2021), the FDA approved Biogen’s drug aducanumab (AduhelmTM),
a disease-modifying monoclonal antibody that, upon entry into the brain, interacts with
parenchymal amyloid and decreases the concentration of Aβ in a dose-dependent man-
ner [72]. In the same year, the FDA limited its approval only to patients with mild cognitive
impairment or mild dementia due to AD [73]. Since its fast approval in 2021, it has been
controversial in the health care field and the scientific community [74]. However, the
approval of aducanumab has paved the way for more extensive and reliable development
of monoclonal antibodies to modulate multiple AD targets in the future.

Over the last decade, some drug delivery strategies such as nanoparticles have been
proposed, which have become useful for blood–brain barrier (BBB) transport, turning into
an important approach to overcome the side effects problem, reducing the impact of these
drugs on the peripheral level. In AD, it has been shown that by using nano-based drug
delivery, it has been possible to decrease Aβ production, aggregation, and clearance, as
well as tau phosphorylation and packaging [75], in which significant progress has been
demonstrated [76]. Despite all efforts, it has not yet been possible to identify the reason that
clinical trials against AD continue to fail [77]. However, it is becoming clear from research
in the last decades that the use of polypharmacological therapies could be a starting point to
deal with the multifactorial nature of complex diseases such as AD. Regarding the number
of molecules currently under development, both small molecules and antibodies, there
are about 200 in clinical trials that could offer some hope for the future (data retrieved in
July 2022 from the ChEMBL database). Figure 4 shows a graphical summary of the types of
molecules being studied and the phase in which each one is found.
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Figure 4. Graphical representation of the number and status of molecules related to AD. (Data
retrieved in July 2022 from ChEMBL database).

4. Computational Polypharmacology Applied to Multitarget Drug Design in AD

Polypharmacology is defined as the design or use of pharmaceutical agents that act on
multiple targets or disease pathways [78]. Recent research in pharmacology has changed
the paradigm of drug discovery for complex and multifactorial diseases such as cancer,
mood disorders, and NDD, given that these diseases result from a complex network of
molecular events not based on a single target. Although this search has been commonly
undertaken from a ligand synthesis perspective, computational approaches have lately
become consolidated in multitarget drug discovery [79]. These methods stem from the 2D or
3D shape and chemical similarity evaluation, target and binding site similarity assessment,
graph theory and modeling, docking methods, pharmacophore analyses, machine-learning
algorithms, and chemogenomics [79], offering a complete approach to study the binding
mechanisms and interactions of certain molecules to the targets to be modulated. Therefore,
several authors have worked on the use of computational polypharmacology methods for
the design and development of drugs for the treatment of Alzheimer’s disease.

In 2020, Oddson et al. [80] developed a high-performance virtual screening (HTVS)
to identify new modulators of two targets involved in AD: AChE and alpha-7 nicotinic
acetylcholine receptors (nAChR α7), confirming that the HTVS approach can be applied in
the search for new drugs with dual activity. Similar to the research of Montanari [57], where
they also performed molecular docking and molecular dynamics to study the multitarget
behavior of a series of coumarin-based derivatives. Another research performed in 2021
studied about 134 secondary metabolites of Gongronema latifolium leaves using HTVS
against protein kinases LRRK2, GSK3β, and MAPK14, which have been associated with the
onset of Parkinson’s and Alzheimer’s disease [81], providing a complete analysis through
different computational tools that are of great use for polypharmacology. Following the
same line, recently, Nozal et al. combined fragments that inhibit key protein kinases
involved in the main molecular pathophysiology pathways of AD, such as tau aggregation,
neuroinflammation, and decreased neurogenesis, and developed novel MTDLs with the
capability to inhibit LRRK2, CK1δ, and GSKβ kinases as well as BACE1. They reported
well-balanced MTDLs with in vitro activity in three different relevant targets and efficacy
in two cellular models of AD. Furthermore, computational studies confirmed how these
compounds adequately accommodate into the long and rather narrow BACE1 catalytic
site. Finally, they employed in situ click chemistry using BACE1 as protein template as a
versatile synthetic tool that allowed us to obtain further MTDLs [82].

These types of findings show how computational polypharmacology (always coupled
with experimental validation) can contribute to a thorough understanding of the binding
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mode of ligands at their binding site, helping to reveal indispensable details for the proper
design of MTDLs.

Multi-Target Directed Ligands (MTDLs) for AD

MTDLs can simultaneously modulate two or more targets, implying that these tar-
gets may have structural or electrostatic similarities—common pharmacophoric features—
which enables them to be modulated by the same chemical entity [83]. There is currently
much interest in the development of multitarget drugs for AD. As shown in Figure 5, more
than 700,000 active compounds are associated with more than 2000 targets involved in
the disease, where a large percentage of them are able to modulate two or more targets
simultaneously. Further information was deposited in the Open Science Framework project
“New drug design avenues targeting Alzheimer’s disease by pharmacoinformatics-aided
tools” (https://osf.io/by86r/).

Figure 5. Number of active compounds related to Alzheimer’s disease and the respective number of
targets they can modulate simultaneously (Data retrieved in August 2022 from ChEMBL database
v31). To process the data, first targets related to AD were extracted from the Open Target Platform,
then data was enriched with Uniprot IDs via Uniprot API and a local mirror of ChEMBL database
v31. For those proteins with bioactive reports or reported as part of drug mechanisms on ChEMBL,
we retrieved the targets and drugs names, compounds ChEMBL IDs, pchembl_value related to the
activity, and the drug or compound phases of developments as itself and for the indication (Alzheimer
in this case). Uniprot API queries, local ChEMBL queries, and data handling were performed with
KNIME 4.6.1 platform. Detailed information can be found at https://osf.io/by86r/.

On the other hand, similarities between interaction and binding sites and their main
characteristics for ligands and specific target–ligand complexes should be taken into account
when multitarget drug design campaigns are being implemented, as reported by Nuñez-
Vivanco et al. [84] for dopamine and/or serotonin transporters and MAO enzymes through
polypharmacology tools.

The ligand-based drug design (LBDD) approach is often used to outline novel MT-
DLs [85], and it is possible to design hybrids based on different ligands by observing
their structure. In the MTDLs design pipeline, there are three possible ways to conjugate
the desired parts by linking, fusing, or merging, which will result in a hybrid molecule
with modulated properties according to the proposed structure and bonding method, as
shown in Figure 6. A well-known case relates to the tacrine hybrids, where different

https://osf.io/by86r/
https://osf.io/by86r/
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bioactive compounds were obtained by using tacrine (an MTDL with activity against
AChE–IC50 = 0.42 µM and BuChE–IC50 = 45.8 µM [65]) as the principal scaffold. For
instance, tacrine–melatonin and tacrine–hydroxyquinoline hybrids present antioxidant
properties and maintain cholinesterase inhibitory activity [86]. Tacrine–flavonoid hybrids
have shown a very prominent inhibitory activity against BACE1 and AChE (low pM range),
which are ~10,000-fold more potent than the tacrine precursor [87]. Novel hybrids in this
category have been designed and synthesized by the covalent linking of tacrine and the
Aβ aggregation inhibitor dipicolylamine. The products are dimers with a potent inhibitory
effect on AChE and Aβ, decreasing tau phosphorylation, preventing synaptic toxicity, and
inhibiting neuroinflammation [88].

Figure 6. Possible strategies to design MTDLs for AD: Linked [86], fused [66], and merged [89].

MTDLs developed by structure-based drug design (SBDD) methods [90,91] have
proven to be successful due to the increasing availability of structural data for key targets
in AD (crystallographic, NMR, and CryoEM structures). SBDD methods have led to
understanding the importance, for example, of pi-interactions to inhibit AChE in the
anionic catalytic site (orthosteric binding site) and the peripheral anionic site (allosteric
binding site). These approaches also led to the identification of key residues at the BACE1
catalytic site. Dominguez et al., reported, the MTDL compound 3f with activity against
AChE (IC50 = 14 µM), BuChE (IC50 = 7.1 µM), and BACE1 (IC50 = 3.1 µM), as well as the
capability to inhibit Aβ peptide (28% at 100 µM) [91].

Due to the growing interest in finding structural similarities among key targets, several
computational polypharmacological tools, such as Geomfinder [92], 3D-PP [93], ProBiS [94],
ProCare [95], PocketMatch [96], and other tools and protocols have been described and
discussed in the literature to tackle the binding site (BS) comparison problem [97–100].
The efficiency proven by these methods demonstrates the need to address the study of
common characteristics among both ligands and targets to establish a rational design
of MTDLs through computational polypharmacology. Some examples of compounds
designed according to these strategies, and which have shown multitarget activity in AD
are shown in Table 3.
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Table 3. Examples of MTDLs and their biological activity against targets involved in Alzheimer’s
disease.

Compound Hybrid-Related Biological Activity
IC50 (µM) Reference
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5. Pharmacoinformatics Tools in Drug Design against AD

The application of well-known pharmacological models to study how different targets
are modulated, together with the tools provided by medicinal chemistry, is fundamental
to exploring the chemical space of new bioactive compounds. Furthermore, the use of
software and servers such as ligand and protein databases allow for simulating the in-
teraction between drug–protein and/or protein–protein, in which it will be possible to
perform the analysis of networks and the implementation of ML models. When framed
in the paradigm of systems pharmacology, these methods are applied to address the dif-
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ferent phases of the drug discovery process against AD (preclinical and clinical phases)
and could be the key to overcoming the current low success rate when designing drugs
against this complex and devastating pathology. In recent years, pharmacoinformatics
tools have been used to enhance drug design processes, i.e., to identify new targets in
AD [107] and neurodegenerative dementias [108], to study traditional Chinese medicine
in AD [109], to discover new MTDLs for AD by analyzing ligand-protein interaction net-
works [110], and to explore new mechanistic insights into AD through protein–protein
interaction networks (PPIs) [111]. Pharmacoinformatics has undergone exponential growth,
changing the way drug research and design are carried out. Currently, different servers
used for pharmacoinformatics purposes have been built to support the discovery of novel
therapeutic alternatives against AD.

Finally, all these tools, made up of databases, software, and different analysis methods,
have been growing along with technology and scientific innovation, allowing the optimiza-
tion of resources and accurate data validation, among other things. In this sense, some
strategies, such as pharmacophore modeling and the use of artificial intelligence, are crucial
stones in the construction of these new trends.

5.1. New Opportunities in Drug Discovery—Pharmacophore Modeling

Macromolecular structures (such as proteins) bind to small organic molecules, where
they can trigger functional modulations and, thus, biological responses. The union of their
ligands with their macromolecular targets is mainly based on the set of chemical interac-
tions, such as hydrogen bonds, ionic, or lipophilic contacts. Thus, 3D pharmacophores
represent an intuitive and powerful description of these interaction patterns [112]. The
official IUPAC definition for this term describes pharmacophores as “the ensemble of steric
and electronic features that is necessary to ensure the optimal supra-molecular interac-
tions with a specific biological target structure and to trigger (or to block) its biological
response” [113,114].

Moreover, these pharmacophores are not a particular set of functional groups or struc-
tural fragments, instead are an abstract description of physicochemical, steric, and electronic
characteristics describing properties of molecules that are indispensable for energetically
favorable ligand-target interactions (pharmacophore features), such as hydrophobic areas,
aromatic rings, hydrogen bond acceptors and donors, as well as ionizable groups [115]. If
the molecules possess similar pharmacophoric patterns, these can therefore be assumed
to be recognized by the same binding site of a given biological target and thus also show
similar pharmacological profiles [116].

Pharmacophore Modeling Classification

Pharmacophore generation can be performed by obtaining information from ligands,
from the receptor without ligand (apo form), or from interactions described in receptor–
ligand complexes, as shown in Figure 7 and as explained next. Ligand-based modeling:
Usually, the pharmacophore builder algorithms first perform steps where quick distance
checking takes place. Then, a 3D alignment of different active compounds and their con-
formations is computed to compare the location of the pharmacophoric features [117,118].
Apo-based modeling: Molecular field-based methods could accomplish the labor of apo-
pharmacophore modeling. First, a grid will be placed in the putative and predefined
binding site. Then, this space will be sampled by several probes to explore target-probe
interactions, miming the interaction of ligand functional groups and their target. Next, an
energy calculation will take place between probes and the atoms from the cavity to identify
favorable interactions. Finally, the local minimum of those calculations will be translated,
such as pharmacophore features [119–121]. Complex-based modeling: Macromolecule–ligand
systems could be available via RMN, X-ray, and/or CryoEM, as well as molecular modeling
solutions. A set of previously defined chemical and geometrics criteria will be identified
and grouped into pharmacophore features [122]. Likewise, complex-based methods could
fulfill this assignment, employing the previously mentioned molecular strategies [123].
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Figure 7. Example of pharmacophore generation for acetylcholinesterase in complex with donepezil
(PDB code: 1EVE). Taken and adapted from Ref. [36].

5.2. Machine Learning and Artificial Intelligence to Enhance Drug Design against AD

Artificial Intelligence (AI) offers a wide variety of methods to analyze large and
complex data in order to improve the understanding of different diseases, especially useful
in the case of complex diseases such as AD. Among the most used AI methods is ML,
consisting of a collection of data analysis techniques that aim to generate predictive models
for classification, regression, and clustering. Another widely used AI method is DL which
uses algorithms that can learn relationships between inputs and outputs by modeling
highly non-linear interactions in higher representations at a more abstract level [124].

AD research using ML continues to evolve, improving performance by incorporating
additional hybrid data types such as omics data and increasing transparency with explain-
able approaches that add insights into specific features and mechanisms related to the
disease. AI has also been used to prioritize or infer repositionable drugs for AD, using
DL extracting low-dimensional representations of a high-dimensional protein–protein in-
teraction network to infer potential drug target genes [125], and even ML has been used
to identify candidates for AD drug repurposing [126]. This offers a great opportunity for
drug discovery and development, as ML approaches offer a set of tools that can improve
decision-making for well-specified questions with abundant, high-quality data, thereby
optimizing the development of new drugs [127]. It is also worth noting that ML methods
are highly data-driven, and high-quality datasets are required to build suitable models. For
example, data derived from databases such as PubChem and ChEMBL offers complete
data related to bioactive ligands and their targets, indications, clinical phases, etc. Other
databases, such as the Open Target Platform [128] or the Therapeutic Target Database [129],
provide valuable information about known and explored therapeutic targets, the targeted
disease, pathway information, and the corresponding drugs directed at each of these tar-
gets. Other datasets such as OASIS [130,131] and ADNI [132–135] had been generated to
perform, for instance, early-stage AD prediction using ML models.

As an example of the usefulness of these tools, some studies have used random
forest and support vector machines ML algorithms, which is a type of supervised learn-
ing [136] as the primary method for screening gamma-secretase inhibitors (675 inhibitory
and 758 non-inhibitory compounds) using 3D structures to calculate 189 molecular descrip-
tors, including constitutional, quantum chemical, topological and geometric descriptors.
The results included 368 possible gamma-secretase inhibitors [137]. Another study de-
veloped a Bayesian ML model based on data available from ChEMBL and PubChem of
AD-related proteins, where they sought to identify a new small molecule that could be
administered as a treatment for AD, finding GSK3β (the protein that phosphorylates the
tau protein) as a target of interest [138].
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6. Drug Repurposing Strategies

One of the strategies used to face the challenge of designing drugs quickly, safely,
and efficiently is drug repositioning. This strategy consists of assigning new indications
for drugs that already exist and are used in some described pathology. Its advantages
include knowledge of the drug, progress in clinical trials, and, therefore, management
and understanding of its pharmacokinetics and the effects it may cause, according to its
previous use [139]. As a very close example, for AD, there is the use of galantamine,
one of the drugs approved by the FDA to treat this disease, which has its origin in the
treatment of poliomyelitis and was repositioned for AD treatment. Similarly, fluoxetine and
levetiracetam, among others, which have serotonin reuptake inhibitors and antiepileptic
functions, respectively, have shown significant results in the treatment of AD [140]. In order
to develop this strategy and perform an exhaustive search among the wide number of drugs
that currently exist and their respective reported purposes or targets, pharmacoinformatics
tools play a crucial role. For example, using network pharmacology and analyzing data
from the ChEMBL database, a drug–protein interaction network (DPI), referring to proteins
and drugs in AD, was built. It is possible to identify three multitarget approved drugs
(rivastigmine, memantine, and donepezil), as well as five single-target approved drugs
(aducanumab, florbetapir, galantamine, florbetaben, and flumetamol) currently indicated
to treat AD (Figure 8). In addition, several FDA-approved drugs present activity against
one or more AD targets, which makes them potential candidates for drug repurposing
against AD. More detailed information about single and multiple drugs and AD targets
can be found in Table S1.

Figure 8. Drug–Protein Interaction network in AD. FDA-approved drugs (phase 4) with reported
activity against AD-targets, data were retrieved on July 2022 from ChEMBL database (v31) using the
“phembl_value” as search criteria. For further details, see the Supplementary Materials.

Drug repurposing has not only been used in NDD, but in general for complex diseases
such as diabetes, psychosis, or cancer. An example of the latter is the drug Raltegravir
as a possible complementary drug therapy, which is initially used as an HIV-1 integrase
inhibitor [141], or the drug repurposing campaigns to treat COVID-19 [142], which, in view
of the global pandemic, requires rapid and advanced solutions.

Another advantage of this strategy is that in conjunction with the use of PPIs, DL, and
ML tools, it is possible to establish a relationship between known and potential drugs for
a given treatment, based on their structure, and also to relate the targets involved, which
allows a key clue in the drug design challenge [143]. For example, using the comparison of
genes through pharmacoinformatics tools, it was possible to suggest new drugs interacting
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with targets associated with NDD, such as AD. A study shows that through this technique,
27 drugs were identified [144], showing potential activity against AD, opening doors to
new challenges and approaches in the development of new treatments.

7. Applications of System Pharmacology in Drug Design against AD

The contributions of system pharmacology in drug design are recent and numerous,
highlighting the need to understand that a single target does not describe the entire phys-
iopathology of a given disease and that a single drug will not provide a final solution,
revealing that the relationship between them opens doors not only to the design but also to
the association of symptoms from the clinical side. An excellent way to address this point
is through systems pharmacology and the use of networks and data mining, as shown
in Figure 9. These methods can also be used to predict new drug targets based on the
relationship between their functions and the reported interaction profiles with known
ligands, allowing the integration of this information into interaction maps that give a more
comprehensive view of the key components of the pathology. This complex model also
allows the characterization of common pharmacophore features among ligands and related
targets, and thus possibly involved in pathology pathways. From here, it would be possible
to work in numerous ways. For instance, with subsequent virtual screening (based on
ligands, structures, and pharmacophores) in order to predict new potential protein–ligand
interactions (PLI) and identify active or inactive elements and scaffolds, among others. In
this way, it can be explored the interaction and relationship between the key factors of the
disease. Moreover, it may be possible to discover some components that have been seen as
secondary but could play a relevant role, making it easier to face the multifactorial chal-
lenge of the disease from a more systematic point of view. In particular, these are necessary
tools for the treatment of multifactorial diseases such as AD and NDD in general [51].

Figure 9. Protein–ligand interaction (PLI) maps in system pharmacology.

The systems pharmacology approach is a useful perspective to understand the molec-
ular mechanisms involved in a given pathology and also to postulate new targets and
predict the response of existing drugs and their adverse effects [145], being a way of tack-
ling diseases such as AD, where it is necessary to consider the multifactorial nature in an
integrative manner.

Systems pharmacology is based on the integration of data from the omics sciences,
in order to understand the activity of drugs in vivo at the molecular, tissue, organismic,
and cellular levels [146]. To do this, it integrates models based on pharmacokinetics-
pharmacodynamics and disease systems [147], giving way to the development of predictive
and quantitative interaction network modeling that allows explaining the adverse effects of
drugs [148] through the understanding and graphic vision of the relationship between the
different targets involved. In addition, given the ability to integrate data in a massive way,
it is possible to use information reported in recent years to obtain new approaches in clinical
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therapy. As shown by Nguyen et al. [149], they identified targets related to metabolism
and memory, such as bradykinin receptor 2 and DLG4 receptor involved in memory and
cognition, which showed to be involved in a network of dementia-associated targets.

This type of network can help both to identify the consequences of modulating one
target or another, or what type of signaling should be targeted, and even to give an idea of
drugs that can regulate as inhibitors, agonists, or antagonists, at the principal or allosteric
binding sites, depending on the relevance of the target for the study and the network that
surrounds it.

The use of genomic data represents a great advance in precision therapy since it con-
siders the possible polymorphisms present in the genome, which could cause variations in
response to the drug [150]. The incorporation of this field in pharmacology has allowed us
not only to understand the physiology of the disease and its response to medications [148]
but has also given way to the characterization of interactions within the biological net-
work and its influence on the identification of new therapeutic targets and the discovery,
development, and repositioning of drugs [150].

8. Challenges and Future Perspectives

In order to estimate the future and projections of research in this area, it is important
to evaluate how it has evolved over the years. As shown in Figure 10, it is a research area
that, year after year, presents more and more associated projects, demonstrating a high
growth and interest by the scientific community. In addition, it is known that for the year
2023, there are already 10 proposed projects beginning to be recruited. Now the challenge
remains to understand and approach this disease from more complex perspectives that
allow uniting the efforts already made to find a more concrete solution or to build it with a
solid base.

Figure 10. Number of AD-related projects per year. In addition, fewer than 50 projects were carried
out in the 1990s, and by 2023 there are already 10 proposed. (Data retrieved on July 2022 from
www.clincialtrials.gov).

Understanding the need to design drugs as MTDLs, capable of simultaneously modu-
lating several targets in the effort to reduce or reverse the pathological manifestations of a
multifactorial disease, might be the cornerstone of the challenge in drug design for NDD
and AD. Once this is in mind, the use of tools that allows quickness and efficiency, together
with cost savings through predictive simulation and data preprocessing, are promising
aspects in facing pathologies such as AD. The contributions of computational polypharma-
cology and pharmacoinformatics to the design of drugs for multifactorial diseases respond
to these needs as a key part of the research in recent years. The current availability of
various pharmacoinformatics tools, the use of networks and exhaustive analysis through
artificial intelligence, and the availability of constructs such as pharmacophores to direct
this process are certain fundamental elements for the development of the coming decades.

www.clincialtrials.gov
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From now on, knowing the different tools and software available for drug design, the
challenge remains to apply them efficiently and to continue advancing in this field.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14091914/s1, Table S1: Drugs and their targets
related with Alzheimer disease.
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