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Abstract: As a consequence of the megadrought in Central Chile, it is expected that most of the
distribution of woody species will be narrowed in the northern limits because of restrictions imposed
by soil matric potential on seed germination. In this study, we analyzed the effect of the soil matric
potential on seed germination and initial recruitment of the sclerophyllous species Prosopis chilensis,
Quillaja saponaria and Cryptocarya alba from contrasting geographic origins (i.e., seed sources). We
evaluated the germination capacity (%) under different matric potentials (i.e., 0, −6, −33, −750 and
−1250 kPa) for 100 days. Soil matric potential of −1250 kPa negatively affected the germination
capacity of the three species. P. chilensis seeds stopped germinating under soil matric potential close
to −1200 kPa, whereas in Q. saponaria and C. alba the complete inhibition of germination was under
−1000 kPa. Seed sources also differed in their germination capacity by soil matric potential: northern
seed sources of P. chilensis germinated with the lowest soil matric potential. There was no clear trend
in Q. saponaria and C. alba, but in general, southern seed sources performed better than the northern
ones. The results showed that Ψm in the soil played an important role in the germinative capacity
against different seed source origins, but not in soils with a north–south gradient.

Keywords: soil water content; native flora; germination capacity; seed source

1. Introduction

Plant growth and development depend on climatic factors such as temperature, precip-
itation, relative humidity, solar radiation, and CO2. Thus, climate change may have serious
consequences due to the increase in temperatures and especially decreases in rainfall quan-
tity and frequency [1,2], particularly in Mediterranean ecosystems such as the one found
in central Chile [3–8]. Moreover, under this scenario of climate change, the projections
indicate substantial losses of flora diversity in this area [3,9]. In general, the regeneration
dynamics of these forests is mainly based on the availability of propagules (i.e., seeds or
vegetative structures) [10–13]. The success of natural regeneration via seeds is generated
through the occurrence of a series of processes such as germination, survival, and seedling
growth [14]. It is known that both abiotic factors (radiation levels, inadequate temperature,
soil water content) and biotic factors (herbivory, competition, insects) affect germination,
but in environments with water deficits, abiotic factors are the most influential [15]. How-
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ever, projected changes in temperature and precipitation regimes, and therefore, in soil
moisture will affect many components that determine the success of seeds in the soil.

Tree mortality induced by drought and extreme heat events threatens the provision of
forest ecosystem services under the climate change scenario [15–17]. The Mediterranean-
type climate zone of Chile has experienced a mega-drought since 2010, with a reduction in
precipitation of 60% occurring in the warmest decade of the last 100 years [18]. The lower
precipitation through consecutive years has decreased soil water availability, affecting the
natural regeneration of forest species in this zone [19–21], such as the dominant species
Prosopis chilensis Molina (Stunt), Quillaja saponaria Mol., and Cryptocarya alba Mol. [7,22].
In this context, the regeneration phase is one of the most critical long-term adaptations
of forest species to new environmental conditions [23], while the soil water content is the
main abiotic factor determining seed germination and recruitment. Understanding how
traits such as germination rate are affected by soil moisture may help the prediction of the
impact of climate change on important forest species.

The first germination stage begins with the entry of water into the seed from the
external environment (i.e., soil). Then, the hydrated seed (imbibition) activates a series of
metabolic processes that are essential for the following stages of the germination process. In
soils, water content is typically quantified by the soil matric potential [24] which represents
the energy with which water is held by the soil matrix (soil particles and pore space) [25].
It has been observed that a more negative soil matric potential (lower water content) can
decrease seed germination [25,26]. Moreover, Gao et al. [26] observed that when the fast
drainage pores are drained (0 to 20 kPa), the germination of Pinus yamannensis seeds
decreases considerably, and that by reducing the water content of the soil to half the usable
moisture (750 kPa) the germination capacity in Bulnesia retama decreases by 50% compared
to seeds that were in a medium with a matric potential at germination capacity at field
capacity (33 kPa) [27]. Although the seed germination process is also linked to the plant
species’ genetics, within a species the germination capacity may considerably vary among
the seed sources (i.e., population geographical origin) [26,28].

In this study, we included three broadly distributed native tree species (P. chilensis,
Q. saponaria and C. alba) in Chile, which, according to the predictions, will be differently
affected by climate change [3,6]. P. chilensis is distributed from north to central Chile
(latitudes 24◦ to 33◦ S), mainly in the central valley and at coastal sites [29]. According to
Miranda et al. [6], P. chilensis is considered a phreatophyte species that may have a tap root
over 30 m deep with abundant lateral roots, which allows the trees to reach the underground
water tables but grows better in sites with shallow water or close to streams. The species’
conservation status is vulnerable because of the degradation of natural populations by
overgrazing, wood extraction, and changes in land use. Q. saponaria and C. alba are two
of the most abundant species of the sclerophyllous forest and are distributed from 31◦ to
37◦ S, on sites in the Coastal and Andean Mountain range. Compared to the deep-rooted
Q. saponaria, C. alba is considered a hydrophilic shallow-rooted species, so it grows better
in areas with high water tables [30]. Regarding the latitudinal distribution and ecological
requirements of the species, it is expected that P. chilensis and C. alba will be the least- and
most-affected species by drought events, respectively, in the context of climate change [3].
P. chilensis will maintain its current distribution, whereas Q. saponaria and C. alba will narrow
their distributions in the northern part [6]. To contribute information to these predictions,
the objectives of this study were: (1) to assess the responses of seed germination to different
levels of soil matric potential on P. chilensis, Q. saponaria and C. alba; (2) to assess the
variation o those responses among seed sources at the species level; and (3) to determine
the relationship between seed germination capacity with climatic and geographic variables
associated to the seed source.



Plants 2022, 11, 2963 3 of 15

2. Results
2.1. Germination Capacity at Different Seed Sources and Matric Potentials

There was a significant interaction between the seed source and matric potential
treatments for all the species (Table 1, Figures 1–3). Contrary to our expectations, none of
the species tended to show a latitudinal pattern in germination capacity except P. chilensis
(Table 2, Figures 2–4). In general, P. chilensis seed sources had high germination capacity,
followed by C. alba and Q. saponaria. There was no germination in any seed sources for the
most restrictive potential of −1250 kPa (Table 1). Only P. chilensis presented a continuous
decline of the germination capacity with the increase of matric potential (Figure 1). From
the northernmost seed source, OV, to the south (LG and CH) there was a steeper decline
in the germination capacity as the matric potential increased. In Q. saponaria (Figure 2)
without restriction at 0 kPa, the highest germination capacity was not obtained, but at −6
and −33 kPa, except in the LB, PO and QL seed sources where it demonstrated a linear
behavior (water content decreased and germinative capacity decreased). On average, for
all seed sources, the highest germination capacity was obtained with a potential of −6 kPa.
In C. alba (Figure 3), unlike P. chilensis and Q. saponaria, there were no significant differences
in germination capacity between the matric potentials (0, −6, −33 and −750 kPa) except
in C. alba, in the seed source HJ, seed sources of the northernmost zone evaluated in this
investigation which also had a negative linear behavior.

Table 1. Germination capacity (%) for each species according to matric potential (Ψm) (n = 3). Means,
±SE. Letters indicate significant differences among matric potential in each species for all seed sources.
According to ANOVA, and LSD-Fisher multiple comparison test (p < 0.05). NA = not measured.
(F value: p < 0.05 *; p < 0.01 *** p < 0.001).

Species

P. chilensis Q. saponaria C. alba

Ψm (kPa) Germinative Capacity (%)

0 96.0 (±1.2) a 57.9 (±7.8) ab 66.1 (±3.5) a

−6 86.3 (±3.9) ab 72.8 (±6.9) a 61.8 (±7.5) a

−33 78.2 (±5.0) ab 40.6 (±6.7) b 62.2 (±9.6) a

−750 69.3 (±9.2) ab 28.5 (±5.8) c 65.1 (±7.8) a

−1000 35.9 (±5.3) bc NA NA

−1250 0.0 (±0.00) c 0.0 (±0.0) d 0.0 (±0.0) b

p-values water potential <0.0001 <0.0001 <0.0001

F-value and significance level

Seed Source (SS) 3.43 * 55.40 *** 20.75 ***

Water potential (Ψm) 133.12 *** 391.40 *** 152.50 ***

SS × Ψm 4.02 *** 12.30 *** 7.22 ***
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Figure 1. Percentage of germination capacity of P. chilensis by seed source and by matric potential 
(log-kPa). North-south order: OV = Ovalle; LG = Chalinga and CH = Chacabuco. Lowercase letters 
show a significant difference between matric potential for each seed source according to the non-
parametric Kruskal Wallis test (p < 0.05). 

  
Figure 2. Interaction of germination capacity of Q. saponaria by seed source and by matric potential 
(log-kPa). ME= El Melón; LD= La Dormida; AO = Cantalao; QL = Quebrada de la Plata; CT = Canti-
llana; PO = Pomaire; CU = Camino el Cobre; VP = Villa Prat and BL = Ñuble. Lowercase letters show 
a significant difference between matric potential for each seed source according to the non-paramet-
ric Kruskal Wallis test (p < 0.05). 

Figure 1. Percentage of germination capacity of P. chilensis by seed source and by matric potential
(log-kPa). North-south order: OV = Ovalle; LG = Chalinga and CH = Chacabuco. Lowercase
letters show a significant difference between matric potential for each seed source according to the
non-parametric Kruskal Wallis test (p < 0.05).
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Figure 2. Interaction of germination capacity of Q. saponaria by seed source and by matric potential
(log-kPa). ME = El Melón; LD = La Dormida; AO = Cantalao; QL = Quebrada de la Plata; CT = Cantil-
lana; PO = Pomaire; CU = Camino el Cobre; VP = Villa Prat and BL = Ñuble. Lowercase letters show
a significant difference between matric potential for each seed source according to the non-parametric
Kruskal Wallis test (p < 0.05).
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natural distribution. P. chilensis: OV = Ovalle; LG = Chalinga and CH = Chacabuco. Q. saponaria: ME 
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Figure 3. Average of germination capacity of C. alba by seed source and by matric potential (log-kPa).
North-south order: HJ = Hijuelas; AN = Antumapu; YA = Coya; FI = Infiernillo; SP = San Pedro and
LO = Loncomilla. Lowercase letters show significant difference between matric potential for each
seed source according to the non-parametric Kruskal–Wallis test (p < 0.05).
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Figure 4. Seed collection sites (seed sources) for P. chilensis, Q. saponaria and C. alba throughout their
natural distribution. P. chilensis: OV = Ovalle; LG = Chalinga and CH = Chacabuco. Q. saponaria:
ME = El Melón; LD = La Dormida; AO = Cantalao; QL = Quebrada de la Plata; CT = Cantillana;
PO = Pomaire; CU = Camino el Cobre; VP = Villa Prat and BL = Ñuble. C. alba: HJ = Hijuelas;
AN = Antumapu; YA = Coya; FI = Infiernillo; SP = San Pedro and LO = Loncomilla.
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Table 2. Mean seed weight and standard error in parenthesis (n = 4) per seed source for all the species.
Lowercase letters indicate significant differences among seed sources for each species (P. chilensis,
Q. saponaria and C. alba) for seed weight, according to non-parametric Kruskal–Wallis test (p < 0.05).
And capital letters statistically significant differences between species. According to the LSD-Fischer
multiple comparison test (p < 0.05).

Geographical Origin Critical Matric
Potential (Ψm kPa) Mean for Specie

Prosopis chilensis

Ovalle (OV) −1158.1 (±19.8) b

−1191 (±19.9) AChalinga (LG) −1262.3 (±12.2) a

Chacabuco (CH) −1154.2 (±23.2) b

Quillaja saponaria

El Melón (ME) −901.3 (±109.9) cd

−1010 (±32.8) B

La Dormida (LD) −1037.3 (±19.4) bc

Cantalao (AL) −1209.0 (±24.9) ab

Quebrada de la Plata (QL) −1035.7 (±92.0) bc

Cantillana (CT) −964.7 (±32.4) cd

Pomaire (PO) −883.3 (±30.2) cd

Camino el Cobre (CU) −794.3 (±8.7) d

Villa Prat (VP) −1272.0 (±12.7) a

Ñuble (LB) −996.0 (±38.4) c

Cryptocarya alba

Hijuelas (HJ) −1056.8 (±27.3) ab

−1061 (±34.7) B

Antumapu (AN) −1021.9 (±25.6) ab

Coya (YA) −1192.6 (±43.9) a

Infiernillo (FI) −1188.3 (±62.6) a

Loncomilla (LO) −1005.6 (±107.4) ab

San Pedro (SP) −904.1 (±59.6) b

We also found significant differences in seed weight among the seed sources in all the
species (Table 2). The seed weights corresponded to those collected at latitudes of 31◦ to
34◦. This attribute was found to be important in the germination capacity of C. alba, but not
in the other species. In C. alba, seed weight is associated with a higher germination capacity
(R2 = 0.64, Table 3). The highest variation in seed weight was found in C. alba (range from
0.64 g to 1.86 g), followed by Q. saponaria (range from 0.06 to 0.18 g).

Table 3. Pearson coefficient of correlation for germination capacity (%) and seed size (g), health status,
and climatic (precipitation (mm) and Martonne) and geographical (altitude (m.a.s.l.)) traits. p-values
in parenthesis.

Seed Size (g) Health Status Precipitation
(mm) Martonne Index Altitude

(m.a.s.l.)

P. chilensis −0.36 (0.3306) 0.71 (0.0336) −0.71 (0.0336) −0.7 (0.0345) −0.53 (0.1383)

Q. saponaria −0.05 (0.8088) −0.66 (0.0002) −0.011 (0.5808) 0.11 (0.5906) −0.08 (0.6917)

C. alba 0.8 (0.0001) −0.21 (0.3954) −0.42 (0.0845) −0.41(0.0904) 0.32 (0.2006)
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2.2. Critical Soil Matric Potential for Germination

In all the species, there were significant differences among seed sources in the critical
matric potential, but this was not attributed to a latitudinal pattern (Table 4). The highest
differentiation among seed sources in this parameter was in Q. saponaria, followed by C. alba
and P. chilensis (Table 4). However, at the species level, the average critical matric potential
of P. chilensis was significantly lower than for the other species (−1200 in P. chilensis vs.
−1036 kPa on average in Q. saponaria and C. alba).

Table 4. Critical matric potential for per seed source at species level. Lowercase letters indicate
statistically significant differences within geographic origins for critical matric potential (kPa) when
germinative capacity is 0%. And capital letters statistically significant differences between species.
According to the LSD-Fischer multiple comparison test (p < 0.05).

Geographical Origin Critical Matric
Potential (Ψm kPa) Mean for Specie

Prosopis chilensis

Ovalle (OV) −1158.1 (±19.8) b

−1191 (±19.9) AChalinga (LG) −1262.3 (±12.2) a

Chacabuco (CH) −1154.2 (±23.2) b

Quillaja saponaria

El Melón (ME) −901.3 (±109.9) cd

−1010 (±32.8) B

La Dormida (LD) −1037.3 (±19.4) bc

Cantalao (AL) −1209.0 (±24.9) ab

Quebrada de la Plata (QL) −1035.7 (±92.0) bc

Cantillana (CT) −964.7 (±32.4) cd

Pomaire (PO) −883.3 (±30.2) cd

Camino el Cobre (CU) −794.3 (±8.7) d

Villa Prat (VP) −1272.0 (±12.7) a

Ñuble (LB) −996.0 (±38.4) c

Cryptocarya alba

Hijuelas (HJ) −1056.8 (±27.3) ab

−1061 (±34.7) B

Antumapu (AN) −1021.9 (±25.6) ab

Coya (YA) −1192.6 (±43.9) a

Infiernillo (FI) −1188.3 (±62.6) a

Loncomilla (LO) −1005.6 (±107.4) ab

San Pedro (SP) −904.1 (±59.6) b

2.3. Environmental Factors Influencing the Germination Capacity

In P. chilensis, the health status had a negative influence (higher health status value,
worse tree condition) since there is greater germination in trees in worse conditions. With
the same influences, such as the Martonne index and precipitation, it had higher germina-
tion from sites with more arid climates and less precipitation. In Q. saponaria, the health
status of the collected trees was what most influenced the germination of this species; trees
in better condition have higher germination. In C. alba, the most significant influence was
the size of the seed: seed weight increased germination in this species.

3. Discussion

Regardless of the different soil matric potentials, our results showed a clear effect of
seed source on germination capacity, thus confirming the relevance of the geographical
origin in the regeneration of the species under study.
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In P. chilensis, a decrease in the germination capacity was observed with an increase in
the soil matric potential of the substrate. The highest germination capacity of the species
occurred with a soil matric potential of 0 kPa, which corresponded to the porous system
of the saturated substrate. P. chilensis seeds require soaking for 48 to 72 h to soften the
testa [29], and this was achieved with the saturated substrate. Rodríguez-Rivera et al. [27]
evaluated the germinative capacity in Bulnesia retama (a species that shares the northern
distribution of Prosopis sp. in Argentina) under different matric potentials, and together
with Varela et al. [31] found that in matric potentials of −1250 kPa, the germination capacity
of B. retama is practically null. P. chilensis exhibited an average germination capacity of
36% at restrictive matric potentials of −1000 kPa. This suggests that the species possess
adaptations to low water, which are related to a dormancy mechanism and allow the species
to germinate in sites with water limitations in precipitation, and a persistent seed bank that
remains dormant until the environmental conditions are conducive to germination [2–32].

In Q. saponaria the highest germination was not obtained with the less restrictive
potential, else with intermediate potentials of −6 and −33 kPa. As all seeds and species
germination requires gas exchange between the germination medium and the embryo [33],
it might be possible that in some seed sources of Q. saponaria, the substrate saturated with
water (i.e., 0 kPa) does not favor the gaseous exchange for its germination, but it is still
close to saturation [31,34]. On seed sources PO, QL and LB, there were a linear response of
the germinative capacity with respect to the matric potential of the substrate [24]. With a
potential of −750 kPa, which represents half the usable humidity, the germinative capacity
of Q. saponaria decreased considerably to 28%, as it is a species that does not have special
adaptations to water deficits, since it develops in temperate climates [32].

For C. alba, the small differences between the matric potentials and the germination
capacity might be attributed to the pre-germinative treatment that was applied to remove
the pericarp, which presents some chemical inhibitors of germination [32,35]. This caused a
homogeneity in the water content of the seed, which generated a more uniform germination
capacity in the less restrictive matric potentials (0, −6, −33, and −750 kPa), which may
be due to the recalcitrant behaviour of the seeds [36–38]. Only the seed source HJ was
affected by the matric potential, indicating that the seed source of this species could
play an important role in the germination of this species with the use of conventional
pregerminative treatments. Saavedra [39] determined the importance in the germination of
the seed source of the C. alba, the water content of the soil and the positive effect of sowing
without pulp. The variability of the seed germinative capacity responds to the specific
adaptations to the site where they develop [26,28,39–43].

In P. chilensis, we observed a contrasting response of the germination capacity accord-
ing to the north–south geographic origin. This species may have adaptations to climatic
conditions, considering that its largest distribution range is in an arid region [29,32]. The
germination capacity was high in seeds from the more arid source OV and LG. Accord-
ing to Martonne’s aridity index (Table 1), seed sources OV and LG are listed as desert.
Rodríguez [44] studied the germination capacity of two geographical origins of Ephedra
ochreata Miers in northern Argentina, a species that shares a distribution with the genus
Prosopis sp. Among its results, the greatest germination capacity of the species was found
in the geographical origins of the most arid areas because of adaptations to xeric sites,
resistance to drought, and the permanence of its viability until conditions are favorable [44].

In Q. saponaria, there was no clear north–south trend as occurred with P. chilensis. The
highest germination was found in seed source VP, which comes from a dryland interior
area. Its best performance could be associated with the health status of the collected stand
compared to the other seed sources, as there was a high correlation between germination
capacity and health status. Seed trees with good seed quality are individuals that have
a good health status [8,45]. VP was the only stand collected classified as 0 (better health
status), compared to ME, LD and BL stands, whose health status was 3 and 2, respectively.
The poor health status may have been due to the browning (i.e., wilting) of the stands in
these areas because of the uninterrupted mega-drought of the last 12 years [6,46]. This
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“browning” effect has been observed in seed sources from higher altitudes [2,7]. Thus, the
higher germination of seed source VP might be attributed to its lower altitude [6,46,47]
better health status [48], and the higher precipitation of the collecting site [7,29].

In C. alba, although the southernmost origins where the seeds were collected (i.e., FI,
LO and SP) have a lower rainfall deficit, the seed size was the smallest, whereas in those
origins with higher germination capacity and major precipitation deficit (i.e., AN and YA),
the seeds were larger. Seed size plays an important role in the processes of germination
and seedling establishment within a population [49,50], and larger seeds have a higher
germination percentage [51], which was observed in our results with C. alba. We observed a
positive correlation between germination capacity and seed size. In seed sources HJ, SP, LO
the lower germination capacity could be attributed to agricultural and forest disturbances
rather than low precipitation, which can alter seed quality [52,53] and therefore its health
status was not adequate for a seed tree [8]. AN was the seed source with the highest
germination capacity, but this stand is under irrigation provided by nearby agricultural and
urban plantations, which means that individuals did not suffer the effect of water deficit
and the quality of their seeds was not greatly affected [54].

In the critical matric potential, the difference between the species is due to the fact
that P. chilensis has better adaptability and is better able to germinate in water-restrictive
environments (i.e., germination is zero at −1200 kPa) than other species. On the other
hand, Q. saponaria and C. alba are species that share habitats and distributions. Both species
develop in Mediterranean-type climates and semi-arid to humid environments and seem
to be less adapted to drought (i.e., germination is zero at −1000 kPa) in comparison to
P. chilensis [55–58].

Therefore, our results, by including soil variables and their ability to store water so that
it is available for germination processes, become relevant. The quality of the soil, especially
the water content of the soil, is a key aspect to guarantee the regenerative capacity of the
Mediterranean forests of the central zone of Chile [59] and is a very important variable
that must be considered in reforestation and restoration plans via direct seeding or when
evaluating the regeneration capacity of forests.

4. Materials and Methods
4.1. Seed Collection and Processing

Seeds were collected between the summer and autumn of 2021 from three geographical
origins for P. chilensis (from 29◦ to 32◦ S), nine for Q. saponaria (from 32◦ to 37◦ S), and six
for C. alba (from 32◦ to 36◦ S) (Figure 4). The health status of mother trees was determined
by a categorical scale (Table S1) and Martonne climatic index by categorical scale (Table S2).
Seed sources were georeferenced and characterized in soil properties and climatic (Table 5).
Seeds were collected directly from 30 trees by seed source. In P. chilensis, fruits were opened
mechanically to obtain the seeds from the pods. In Q. saponaria, the capsules and locules
were opened mechanically, separating the seeds by sieving. C. alba has recalcitrant type
seed, and the collected fruits were immediately stored at 4 ◦C for a short period of time (1).
Moreover, some pre-germination treatments were conducted by species, which correspond
to acid scarification for P. chilensis, pulp extraction for C. alba, and stratification at 4 ◦C for
7 days for Q. saponaria. In C. alba the pulp was rotted by soaking for 48 h.
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Table 5. Climatic and edaphic characteristics of the seed source. MAT= Mean Annual Temperature (◦C); MAP= Mean Annual Precipitation (mm); MAI = Martonne
aridity index (1926), S = Total Porosity (%), UW = usable water (%). Health status [48], Deficit pp = precipitation deficit last 12 years (%), ETR = Annual Reference
Evapotranspiration (mm); Db = Bulk Density (Mg m−3); Dr = Real density (Mg m−3), S = Total Porosity (%). Agroclimatic Atlas of Chile, Volume II and III, 2017 [60],
Soil samples collected and analyzed at the Soil Physics Laboratory, Faculty of Agronomic Sciences, University of Chile, 2021 [61].

Geographical
Origin

Coordinates UTM Altitude
(masl)

MAT
(ºC)

MAP
(mm) MAI

ETR
Annual

(mm)

Deficit
pp (%) Soil Series Texture of

Soil
Db Dr

S (%)
Water Retention (kPa)

UW (%) Health
StatusX Y (Mg m−3) (Mg m−3) 33 1500

Prosopis
chilensis

Ovalle (OV) 289,710 6,634,010 446 15.6 66 2.6 1448 89 Tambillo Sandy
loam 1.45 2.71 46 0.13 0.06 7 2

Chalinga
(LG) 269,291 6,596,327 157 18.8 66 2.3 1448 89 Tuqui Silty Clay

Loam 1.62 2.68 40 0.22 0.14 8 2

Chacabuco
(CH) 340,080 6,348,960 641 19.8 259 8.7 1534 75 Rungue Clayey 1.46 2.65 45 0.31 0.23 8 1

Quillaja
saponaria

El Melón
(ME) 289,988 6,391,566 600 14.4 429 17.6 1350 75 Catemu Loam 1.35 2.65 49 0.2 0.1 10 3

La Dormida
(LD) 314,475 6,340,022 695 14.8 310 12.5 1380 73 Lo Vásquez Clay Loam 1.45 2.65 45 0.19 0.12 7 1

Cantalao
(AL) 359,604 6,295,762 465 14.7 174 7 1474 72 Asociación

Challay Clay Loam 1.12 2.72 59 0.31 0.18 13 2

Quebrada de
la Plata (QL) 321,508 6,291,796 401 14.8 86 3.5 1489 70 Asociación

Munsel
Sandy Clay

Loam 1.35 2.52 46 0.29 0.12 17 1

Cantillana
(CT) 321,558 6,250,315 915 14.6 115 4.7 1455 72 Lo Vásquez Sandy Clay

Loam 1.46 2.68 46 0.21 0.09 12 3

Pomaire (PO) 313,058 6,280,254 216 14.4 407 16.7 1443 58 Pahuilmo Slimy loam 1.4 2.61 46 0.35 0.25 10 0

Camino el
Cobre (CU) 353,356 621,490 220 14.1 567 23.5 1471 55 Pimpinela Silty Clay

Loam 1.49 2.68 44 0.25 0.13 12 2

Villa Prat
(VP) 236,739 6,101,855 404 14.5 671 27.4 1470 38 Lontue Sandy

loam 1.25 2.65 53 0.23 0.14 9 3

Ñuble (LB) 725,000 5,980,500 945 13.9 858 35.9 1371 33 Asociación
Treguaco

Sandy Clay
Loam 1.26 2.65 52 0.26 0.14 12 2

Cryptocarya
alba

Hijuelas (HJ) 308,503 6,260,416.3 473 14.4 429 17.6 1350 71 Ocoa Sandy
loam 1.18 2.49 53 0.25 0.15 10 0

Antumapu
(AN) 348,515 6,291,391 629 14.7 174 7 1474 68 Santiago Clay loam 1.15 2.57 55 0.34 0.19 15 0

Coya (CY) 360,498 6,214,498 1047 14.1 567 23.5 1471 55
Asociación

Sierra
Bellavista

Sandy
loam 1.45 2.67 46 0.22 0.13 9 1

Infiernillo
(FN) 221,871 6,076,473 150 14.5 671 27.4 1470 40 Asociación

Pocillas
Loamy

Clay Loam 1.41 2.62 46 0.27 0.16 11 2

Loncomilla
(LN) 229,719,9 6,065,850 88 13.8 720 30.3 1521 33 Asociación

Cauquenes Clay loam 1.45 2.69 46 0.25 0.16 9 1

San Pedro
(SP) 191,758 6,066,938 230 13.3 920 39.5 1271 35 Asociación

Constitución
Sandy Clay

Loam 1.37 2.58 47 0.31 0.21 10 3
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4.1.1. Substrate Preparation, Water Retention Curves, and Matric Potential Treatments

The substrate used in this experiment corresponded to an operational mixture of
hydrated coconut (80% fiber), perlite (20%), and an initial dose of 1 g L−1 of slow-release
fertilizer (Basacote 6M, Compo Expert). A preliminary calibration of a water retention
curve of the substrate was obtained with subsamples subjected to different matric stresses
(i.e., 0, −0.2, −1.0, −6.0 −33, −1000 and −1500 kPa, Figure S1) following the method
of [62] using sand bed (and pot and pressure plate (Sandbox for pF determination (pF 0–2.0)
Ceramic plates set for pF determination (pF 2.0–4.2)) of Eijkelkamp Soil & Water. Briefly,
the freshly prepared substrate was placed on aluminum trays (3240 cm3) that were filled to
90% of their capacity with the substrate (approximately 800 g) and was compacted for 30 s
by a weight of the same dimensions of 9000 g.

4.1.2. Experimental Design

Based on the calibrated water retention curve, we defined the following matric po-
tential treatments: T1: 0 kPa, T2: −6 kPa, T3: −33 kPa, T4: −750 kPa, T5: −1250 kPa. An
additional treatment (T6: −1000) was added for P. chilensis. Treatment T3 corresponded
to the substrate field capacity. For each species, we followed a design (CRD) with three
replications per each combination of seed source and matric potential treatment. Aluminum
trays (i.e., repetition) were filled with substrate and prepared according to the described
calibration method. Matric potential treatments were reached by drying the substrate at
ambient conditions in the laboratory. Then, each aluminum tray was sowed at 0.5 cm depth,
and then immediately sealed with Parafilm to avoid water loss. Trays for Q. saponaria and
P. chilensis contained 30 seeds, whereas for C. alba 21 seeds. Sowed trays were maintained
in a growing chamber at a constant temperature of 16 ◦C [38]. The trays’ weight was
monitored every two days with a precision balance (precision 0.01 g). When necessary,
trays were rewetted to maintain the matric potential by adding water until reach the weight
associated to each matric potential treatment.

4.2. Measurements

Seed variation among seed sources was determined by expressing the average mass
of 100 seeds according to ISTA rules [63]. In the germination experiment, a seed was
considered germinated with the appearance of the plumule. This was monitored daily
for 100 days. At the end of the experiment, the germination capacity was determined as
the percentage of germinated seeds over the initial seeds sowed. Dead seeds were also
recorded.

4.3. Data Analyses

Analysis of variance (ANOVA) on germination capacity (%) was carried out per
species, and included the effect of the seed source, matric potential, and the interaction of
these two factors in the (CRD). Seed weight was analyzed by a one-way ANOVA, with seed
source as main factor. We checked the assumptions of normality of the residuals (Shapiro-
Wilk tests) and homoscedasticity (Levene test) accordingly. Post hoc mean comparisons
were made with the LSD-Fischer tests. If the errors were not normally distributed, and the
variances were not homogeneous, non-parametric tests (Kruskal–Wallis) were performed.

Additionally, the effect of precipitation, aridity index and altitude on the germination
capacity was explored through the Pearson’s coefficient of correlation. All the analyses
were performed with the Infostat software (2020) and using a significance level of 0.05.

To determine the critical matric potential for germination of each seed source (matric
potential where the germination is zero), we fitted a simple linear regression with germina-
tion capacity on the y-axis and matric potential in the x-axis and determined the intercept
of the model in x-axis.
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5. Conclusions

Our results showed a clear effect of seed source on germination capacity regardless of
the soil matric potentials, thus confirming the relevance of the seed source in the regenera-
tion of the species under study. The matric potential influenced the germination capacity
of the evaluated species, being more relevant for P. chilensis, where the best germination
was found in the saturated medium. In Q. saponaria, a saturated medium did not favor
germination. P. chilensis have a more tolerant strategy as the species can germinate even
with restrictive matric potentials, whereas Q. saponaria and C. alba are more sensitive. In
general, no evidence was found on the effect of the environmental conditions analyzed
(climatic and geographical) on the germination capacity of the species. In a climate change
scenario, the decrease in precipitation may seriously compromise the soil water content and
consequently the germination of these species in, especially in the most water-restrictive
sites. We advocate that the variation of the seed sources be considered and managed by
considering the climate and characteristics of the sites to be restored, and by considering
the characteristics of the sites where the seeds are collected.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11212963/s1, Table S1: Defoliation or damage classes
to define the Health Status of trees; Table S2: Martonne arid index; Figure S1: Water retention
characteristic curve of substrate.
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