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Abstract: This article proposes a novel method for detecting coronavirus disease 2019 (COVID-19)
in an underground channel using visible light communication (VLC) and machine learning (ML).
We present mathematical models of COVID-19 Deoxyribose Nucleic Acid (DNA) gene transfer in
regular square constellations using a CSK/QAM-based VLC system. ML algorithms are used to
classify the bands present in each electrophoresis sample according to whether the band corresponds
to a positive, negative, or ladder sample during the search for the optimal model. Complexity
studies reveal that the square constellation N = 22i × 22i

, (i = 3) yields a greater profit. Performance
studies indicate that, for BER = 10−3, there are gains of −10 [dB], −3 [dB], 3 [dB], and 5 [dB] for
N = 22i × 22i

, (i = 0, 1, 2, 3), respectively. Based on a total of 630 COVID-19 samples, the best model
is shown to be XGBoots, which demonstrated an accuracy of 96.03%, greater than that of the other
models, and a recall of 99% for positive values.

Keywords: COVID-19; CSK; QAM; VLC; BER

1. Introduction

While the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still un-
dergoing new mutations, it is currently risky to declare that the virus is no longer a problem.
It is unknown whether the current vaccines prevent severe symptoms, hospitalisation or
death. Some research on new COVID-19 variants indicates that the virus is spreading
faster than in the past [1] and has effects of maternal SARS-CoV-2 infection on pregnant
women, foetuses, and newborns [2]. A study on the presence of COVID-19 and its asso-
ciation with respiratory syncytial virus was conducted during the winter of 2020–2021
in Europe and North America [3] to determine whether SARS-CoV-2 mutates similarly
globally or whether it mutates differently in specific populations [4]. Newly emerging
variants of SARS-CoV-2 continue to pose a significant threat to global public health by
causing COVID-19 epidemics [5]. The SARS-CoV-2 pandemic has highlighted the need
for routine monitoring of infections in high-density indoor areas, such as hospitals and
underground environments, with the strictest monitoring required for dust particles in
pollution-absorbing tunnels and metro stations.

The primary method for preventing transmission is social distancing, for which mea-
surement mechanisms have been developed that establish areas of risk based on the number
of people in a given geographical area [6]; however, the collection of medical samples does
not allow the health system to maintain constant monitoring, because it requires patients to
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visit a medical centre or have medical personnel visit their home. In addition, only variables
such as temperature [7] and physical conditions can be monitored continuously [8].

This strategy was tested in many areas during the SARS-CoV-2 pandemic and was
validated by a number of authors [9,10]. Another benefit of pathogen identification through
sewage is the ability to monitor both endemic and Waterborne Datasets (WBDs) [9,11–13].
The latter are collections of microorganisms primarily related to diarrhoea disorders that are
transferred by water or food irrigated in polluted water and generate large-scale outbreaks.
A national pathogen monitoring system utilising Optical Wireless Communications (OWC)
technologies will provide a significant contribution and is an innovative technique for
detecting these pathogens. Individual testing and traceability systems are one way to
achieve this objective. However, the cost of the other detection methods and the limited
representativeness of the gathered data prevent the creation of appropriate models for
this objective. It reduces the number of samples required for analysis, is representative
of the population whose waste is channelled into the sample, is independent of sanitary
conditions due to the low availability of tests, enables the observation of under-represented
or asymptomatic diseases, and is less expensive than other methods [14]. The use of
mathematical methods on images in conjunction with ML techniques yields results that
aid in less subjective decisions being made, allowing later validation of the diagnosis [15].
Among other things, the impacts of the epidemic on public health, culture, the environment,
and the economy [16] have provided motivation for the use of technologies such as Artificial
Intelligence (AI), ML [17], robotics [18], big data [19], and the IoT [16]. In order to measure
vital signs, many of the mechanisms employed for this purpose include equipment that
must come into contact with the body of an individual [20,21] by using specimens from
medical facilities [22,23] or at home through the use of robots [18].

In relation to this paper, our team has published original models of underground
channels [24–28]. Additionally, before the pandemic, we produced papers on DNA [29–31]
and work on MIMO [32–34]. Pathogens will always be around humans, so it is crucial to
conduct channel studies that allow us to transfer information under any circumstance in a
secure and fast manner.

This manuscripts makes the following contributions to this area of research: It provides
a mathematical model for mapping DNA genes using a CSK/QAM scheme transmitted
by Frequency Shift Keying (FSK) over a MIMO VLC-based underground channel and an
ML-based technique for identifying COVID-19.

In addition to this introduction, there are four more sections in this document. In Sec-
tion 2, the current state of knowledge is presented. Section 3 provides the methodology.
Section 4 is a discussion of the results, while Section 5 contains the conclusion.

2. State-of-the-Art Techniques

This section presents the state-of-the-art techniques used for the application of VLC in
underground channels. This is followed by the presentation of a model of a channel based
on colour shift keying with quadrature Amplitude modulation (CSK/QAM) mapping, the
use of the Galois Field Mapping/Galois Fields Demapping interface between the human
side of the machine and the signal processing communication channel, and finally, AI-based
procedures to replace human processing. Note that COVID-19 and pathogens in general are
most likely to spread rapidly in indoor settings, such as hospitals or industrial settings like
mine tunnels. As evidenced by events of the last three years, this can result in a decrease in
a country’s GDP and crippling of its economy.

2.1. Work Related to the VLC Channel

As mentioned in the previous paragraph, the fact that gene information can be colour-
coded makes it necessary to discuss alternatives for the implementation of the underground
channel. The above model can be used in interior settings, hospitals and underground
tunnels. For this reason, studies on underground channels, scattering distribution patterns,
and FSK in an underground channel are presented. Using experimental tests and math-
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ematical simulations, it has been found that FSK is the best method for reaching longer
distances, because the energy is concentrated in a single frequency tone in a mining tunnel.

2.1.1. Work Related to Underground Channels

Earlier efforts modelled the VLC channel in underground mining environments using
the same Lambertian channel model as an indoor VLC channel. This meant that dust
scattering, reflections on uneven walls, light obstruction, also known as shadowing, and
the relative tilt and rotation of LEDs and PDs were disregarded. Furthermore, light has
a dual nature and, depending on the quantum interpretation of the observer, can be
modelled as either a particle or a wave [35]. The majority of current research on VLC
communication in underground channels focuses on on–off keying (OOK) modulation,
which is similar to amplitude modulation. In terms of phase, frequency modulation
includes both coherent and noncoherent signals. Coherent FSK signals are those whose
phase remains constant over time. Inconsistency also exists when the phase changes
or varies over time. The continuous use of pneumatic hammers to excavate rocks in
underground tunnels generates a substantial quantity of airborne dust that is detrimental
to any channel. Prior generation processes have always sought to include [36] VLC or
hybrid communication. To model the scattering effect and incorporate it into the overall
model of the underground mining visible light communication channel (UM-VLC), a
robust mathematical infrastructure is required for UM-VLC [37,38]. Consequently, the
effect of dust particles in the air is disregarded during testing in nonscattering indoor
environments, such as offices, homes and hospitals; consequently, such models cannot
function in underground tunnels.

2.1.2. Work on Scattering Distribution Patterns

When the dust particle size is very small, the proposed dispersion distribution models
can be implemented in any type of multipath wireless communication system. However,
as the dust particle size increases and the dust concentration causes small holes in the
sensors, the waves revert to particle behaviour and scatter more. Previous studies modelled
different arrival schemes over time and various communication scenarios [39–41]. A dust
disc around the optical receiver was modelled as a uniform distribution within a 2D disc
region [42,43]. In [40], a statistical analysis was conducted in a hemispheric area around a
base station. Using a geometric model of a mobile transmitter channel, the signal’s arrival
time and direction were analysed. A Gaussian scatter distribution model was presented.
Due to the model’s spatial–temporal properties, in terms of the arrival angle and arrival
time [41], it will eventually be possible to apply it to multipath wireless communication
systems. Tennskoon [44] proposed a three-dimensional (3D) stochastic geometry model
with a Gaussian distribution centred on an arbitrary point within a sphere.

2.1.3. Work Related to FSK in Underground Channels

As previously stated, the majority of the literature on VLC in general has used OOK
and laboratory level tests at very short distances with white light. On the ground, this
results in large, power-hungry drivers. Therefore, it might be interesting to include the
frequencies or wavelengths of the chosen colours [45]. There are few FSK applications for
VLC which, by definition, has a longer range and lower power consumption. In [46], an
advertising panel that uses FSK to communicate with a cell phone application is discussed.
Salmento [47] described a lab-scale VLC system comprised of a single-stage buck-boost
power factor correction converter operating in discontinuous drive mode with dimming
capability. Dahri [48] described a system for vehicle-to-vehicle communication using
FSK. The only studies on FSK modulation applied to underground mining are presented
in [49–51], which all involved testing in a mine tunnel.

The models discussed previously are extremely rigid and linearly conceptualised.
Quantum objects, on the other hand, do not need to have their properties defined; a beam
of light can arrive at the photodetector not only in a straight line in a coherent manner but
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also via other angles in an incoherent manner [52]. Dust, for instance, can be modelled
as large particles colliding with waves, which cause collisions that deflect the waves, but
photon jets arrive at the photodetector because they are aligned. If these become stuck
in the detector and clogged by dust, leaving a few holes that convert the photon jets
back into waves, all of the previously discussed models become invalid. According to
Aharonov [53], infrastructure maintenance and cleanliness appear to be more important
than simple model validation.

2.1.4. Model of a Channel Based on CSK/QAM Mapping

In the context of visible light communication, the use of the colour shift keying
modulation scheme has allowed the application of different techniques in relation to the
optimisation of the colour space which, according to the IEEE 802.15.7 standard, presents
nine valid schemes for the combination of colours with 4, 8 and 16 Color Shift Keying
(CSK) constellations. However, performance should be improved by concatenating other
modulation or coding methodologies. To improve spectrally efficient transmissions in
VLC systems using CSK communication, coding and mapping techniques, such as bit-
interleaved coded modulation with iterative demapping and decoding [54], are applied.
These work best for high-speed VLC applications. Machine learning is also applied to find
the most optimal combination of coding and modulation technologies. Its performance
is based on the mapping of symbol permutations through points in an optimized CSK
constellation, This offers benefits in terms of diversity, resistance to channel degradation
monochrome, and increased security. This type of method can be combined with MIMO
technologies [54] to evaluate systems through Monte Carlo simulations. For the generation
of a multiuser channel, the optimisation of channel resources and the technical type of
spatial division used are essential. Separation by means of CSK modulation techniques to
maximise the minimum Euclidean distance between different points of a constellation or
multiuser joint constellation [55] is used for this purpose. Techniques such as multiplexing
of the symbols used in wireless channels where each 7-bit 128 QAM symbol is multiplexed
by a complex value signal to form a 32 QAM with an additional gain of 40% is done
to compensate for problems related to chromatic dispersion and non-Kerr linearity [56].
The use of constellation probability shaping is a high-order modulation format optimisation
technology that optimises the probability distribution of each signal constellation point
to improve the generalised mutual information and increase the transmission capacity of
QAM modulation [57].

2.2. Galois Field Mapping/Galois Fields Demapping

In [58], the author describes the problems faced and efforts to eradicate the COVID-19
pandemic. In order to achieve this objective, documentation is produced to examine the
signatures of genomes using chaotic studies. First, alternative representations of the SAR-
COV-2 DNA sequences, such as colour-coded images, indicator matrices, DNA walks, and
chaotic games were created.

In [59], the detection of cancer using images is proposed. Cells are constantly exposed
to numerous mutagens that produce diverse types of DNA lesions. Eukaryotic cells have
evolved to contain a vast array of DNA repair mechanisms that are capable of detecting and
repairing these lesions, thereby preventing genomic instability. Based on their functions,
repair proteins are recruited to lesions sequentially.

In [60], the helitrons, eukaryotic transposable elements transposed by the rolling-circle
mechanism, are defined. These have been identified in numerous species with highly
variable copy numbers and, in some cases, they comprise a significant portion of the
genome. Using images of the constituent helitron features and a pretrained neural network
as a classifier, classification was conducted using the k-means features corresponding to
genomic sequences, and this method was compared with the Support Vector Machine
(SVM) and Random Forest methods.
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A few studies have employed Galois fields to numerically represent DNA [29,31]. Rep-
resentation through Galois Fields GF(p) is based on gel electrophoresis, a standard method
for separating double-stranded DNA (dsDNA) fragments of different sizes previously
obtained by the Polymerisation Chain Reaction. When interpreting the electrophoresis of
GF(p) and its extension GF(pn), the standard notation [61,62] is utilised. Pathogen-causing
SARS-CoV-2 DNA is used for COVID-19 detection because it contains four distinct genes:
Adenine (A), Cytosine (C), Guanine (G), and Thymine (T). By using four non-binary sym-
bols, the four states 22i

, i = 1 can be represented by natural numbers such as [0, 1, 2, 3] or
by colours such as [red, green, blue, yellow] [63,64].

In [59], the author proposed the detection of cancer using images. Cells are constantly
exposed to a variety of mutagens that generate various types of DNA lesions. In order
to prevent genomic instability, eukaryotic cells have evolved a vast array of DNA repair
mechanisms capable of detecting and repairing these lesions. According to their function,
repair proteins are sequentially recruited to lesions.

Reference [60] described how helitrons, eukaryotic transposable elements (tes) trans-
posed by the rolling-circle mechanism, have been identified in numerous species with
highly variable copy numbers and, in some cases, constitute a significant portion of the
genome. Using images of the constituent helitron features and a pretrained neural net-
work as a classifier, classification using the k-means features that correspond to genomic
sequences was conducted, and a comparison to the SVM and Random Forest methods
was made.

Many studies have linked ML to the diagnosis of COVID-19 using lung
X-rays [23,65,66]. Deep neural networks (DNN) were used to process images in [67],
and statistical methods were used in conjunction with heuristic filtering to identify somatic
mutations in tumour samples.

2.3. AI-Based Procedures to Replace Human Processing

In the manual detection of SARS-CoV-2, a machine–human couple interpreted the
gel electrophoresis results following a two-step end point Reverse Transcriptase PCR (RT-
PCR). In this method, the N1 and N2 gene targets are followed to detect SARS-CoV-2, and
Ribonuclease P (RNase P) is used for Ribonucleic acid (RNA) extraction. A dataset of 242
gel images obtained in that study was utilised in this work [68].

Using a histogram database, [69] contributed to the formation of a stratification system
with three severity levels (moderate, severe and mild) that defines infection in various
slides from a COVID-19 patient. The authors of [70] argue that the use of deep learning
in medical imaging is an emerging technology for the diagnosis of a variety of diseases,
such as pneumonia, lung cancer, brain stroke, and breast cancer. Before constructing a
predictive model, machine learning and conventional data mining techniques perform
the time-consuming feature extraction process. A convolutional neural network (CNN)
was constructed using 1920 Chest X-rays (CxR) from healthy individuals and COVID-19
infected patients as training data. Using the clinical results of the 300-CxR validation
dataset, the performance of the developed CNN was assessed further.

3. System Diagram

Figure 1 is a system diagram that illustrates the phases of model searching and
operation of the classification model. Assuming the diagram can be folded along the dashed
line, the first three boxes at the emitter and the last three boxes at the receiver represent
human activity that could be automated. The organic samples consist of chromosomes
with four genes represented by four symbols, Adenine (A), Cytosine (C), Guanine (G),
and Thymine (T), which are passed through thermocycles or undergo amplification of the
deoxyribonucleic acid (DNA), separation and delivery to the next block. The ”(+)”, ”(−)”,
and “Ladder” states of the receiver’s reverse function, designated by the listing symbol,
reveal the genes that contain COVID-19.
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Figure 1. System diagram for the phases of model searching and operation of the classification model.

At the entrance of the second block, the resulting DNA samples are loaded into the
second block, called “Electrophoresis”, which allows the generation of images of gels.
The inverse block called “Artificial Intelligence Classification” represents the best model
for classification.

In the third block, called “Computer Vision Processing”, the image from the previous
block is filtered and delivered to the next block for numerical representation. On the
receiving side, the reverse process is called “Computer vision interpretation”, where a
numerical input is converted into an image for interpretation.

The remaining issues are associated with the communication process. Galois Field
Mapping/Galois Fields Demapping is a function that converts images to polynomials in
the emissor and polynomials to images in the receiver. In the fifth block, called “CSK/QAM
modulation”, each of the numbers is calculated as the centroid of the CSK modulation
and mapped into a QAM constellation, and these signals are sent over the MIMO channel.
In the receiver, the block called “CSK/QAM demodulation” takes the QAM signals and
converts them into numbers which are delivered to the Galois Fields Demapping block.

Figure 1 depicts a massive array of LEDs and photodetectors inside a box that rep-
resents the VLC/FSK MIMO channel. The segments connecting the antennas represent
electromagnetic waves propagating in air molecules as photon jets or sine waves with an
amplitude, frequency, and phase.

3.1. Line-of-Sight (LoS) Link

To obtain hLoS(t), the most fundamental VLC link is considered with a single light
source (LS), which can be monochromatic or multichromatic, and a single PD in an indoor
free-space environment. When considering the LS, a point source from the perspective of
the PD, the optical received power PR,opt can be expressed as [71]:
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PR,opt = PT,optGconc Gfilter f (θ, θ1/2)
AR, eff

πr2 for d� λ and AR � λ2, (1)

where PT,opt is the optical transmission power, Gconc ≥ 1 is the optical concentration gain,
Gfilter ≤ 1 is the optical filtering loss, r is the distance between the LS and the PD, θ1/2 is
the half-power angle of the light beam, AR is the aperture area of the PD, and AR,eff is the
effective aperture area of the PD such that [71]:

AR,eff = AR cos φ, (2)

Note that the condition d� λ stems from the point source assumption, while the con-
dition AR � λ2 implies that the optical power detection process at the PD is deterministic.
Note that when φ exceeds the field of vision (FOV) of the PD, φPOV. Then, PR,opt = 0 [71].

3.2. Non-Line-of-Sight (NLoS) Link

Multipath channels cause stochastic and time-varying signal distortion in Radio Fre-
quency (RF) communications, causing microwave channels to be modelled as random.
The multipath channel in the VLC, on the other hand, is deterministic because AR � λ2.
In other words, the PD captures the optical signal over an area that is millions of times
larger than a square wavelength. The indoor VLC channel is time-invariant as long as the
objects in the room are fixed. Nonetheless, multipath propagation can cause intersymbol
interference in VLC systems at high data rates, according to Hoeher [71]. To obtain hNLoS(t),
it is easiest to begin with a single reflector. This reflector serves as a virtual light source
(VLS). Because most reflections are diffuse, the angle of irradiance θ2 is not always the same
as the angle of incidence φ1. Furthermore, Lambertian reflections are commonly used. By
using r1 to represent the distance between LS and VLS and r2 to represent the distance
between VLS and PD, GconcGfilter = 1, and Equation (3) can be extended to [71]:

PR,opt = PT,opt f (θ1, θ1/2)
Aref,eff

πr2
1
· ρ(λ) f (θ2, 60◦)

AR,eff

πr2
2

(3)

3.3. Transmitter: LED

The semiconductor light sources known as light-emitting diodes (LED) emit light
when current flows through them. This is conceivable because of the electroluminescence
phenomenon, in which the forward current causes semiconductor electrons to rejoin elec-
tron holes and release energy as photons. The energy required for electrons to traverse the
band gap of the semiconductor determines the wavelength of the emitted light. Phosphor
LEDs and Red Green Blue (RGB) LEDs are the two most commonly used types of LED to
generate white light: (i) by using a blue LED with yellow phosphor, white light is produced
and (ii) by using the RGB-based LED, which does not use phosphorus and is sustainable,
high speeds can be reached in domestic environments [72].

3.4. Receiver

Photodiodes are photoelectric transducers because they convert signals of optical
power to electrical impulses. The photodiode will generate an output current that is pro-
portional to the incident optical power R(λ) at a specific wavelength Φ(λ). It is measured
in amperes per watt (A/W), as shown by Equation (4). The materials and structure of a
photodiode determine its response curve.

R(λ) =
ir

Φ(λ)
, (4)

3.5. The DC Gain of the Channel Model

When an optical input and optical output are considered, the Direct Current (DC) gain
of the channel model is given by
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Href, opt = HLoS + HNLoS,(1) + Hscatter , (5)

where HLoS is the LoS component, HNLoS,(1) is the single-hop NLoS component, and Hscatter
is the NLoS contribution of light scattering off dust particles. Due to the insignificance of
the following bounces in terms of the received power and time dispersion, only one hop is
evaluated [25,37]. In Appendix A, we provide descriptions of reference model equations,
which describe the most applicable reference models utilised for the UM-VLC Single input
single output channel (UM-VLC SISO) [24,25]. In [38], it is assumed that particles are spread
through a two-dimensional disc with irregular walls, nondeterministic diffuse reflections,
shadows, and a scattering component.

4. Methodology

From right to left, Figure 1 shows the methodology, which comprises the MIMO chan-
nel, CSK/QAM Modulation and the DNA strand picture as a polynomial and vice-versa.

4.1. Model of a Channel Based on CSK/QAM Mapping

Due to its low cost and simplicity, intensity modulation with direct detection (IM/DD)
is used in the majority of VLC systems. The transmitters in this kind of system are LEDs,
and the instantaneous optical power Φe(t) is modulated in proportion to the driving
electrical current it(t), which is modulated in accordance with the data to be broadcast.

The optical power signal travels down the channel and eventually reaches the receiver’s
surface, which is often a photodiode, also known as a photodetector (PD). In the photodiode,
the received optical power causes a proportionate photocurrent, ir(t). In this study, the Bit
Error Rate (BER) was calculated using the Minimum Mean Square Error (MMSE) estimator
for a variety of MIMO arrays [73]. In order to send the DNA samples that are in a sewer,
an uplink process must be created. This assumes that there are Nt light sources capable of
transmitting the signal and a receiving device with Nr Photo detector (PDs):

y =

 h1,1 . . . h1,Nt

. . .
hnr ,1 . . . hnr ,Nt

x + n , (6)

where y is the Nr × 1 vector representing the signal received at each PD, x is the transmitted
signal vector of size Nt × 1, hi,j(i = 1, . . . , Nr and j = 1, . . . , Nt) are the channel gain of
the link between the j-th transmitter and the i-th PD, and n is the Nr × 1 vector representing
the noise at each PD, including all possible noise, which can be expressed as Equation (5).

Furthermore, the mapping of an M-CSK constellation to an M-QAM constellation is
proposed. Figure 2 represents an xyY diagram of the Commission Internationale de l’Éclairage
(CIE) colour space from 1931. This was the first colour space based on experimental results
of human colour perception. A colour space is a multidimensional collection of all colours
that a certain colour model can generate. Historically, the IEEE 802.15.7 standard defines some
guidelines for designing M-CSK constellations and directly applying them for modulation [74].

Figure 2. The xyY diagram of the Commission Internationale de l’Éclairage.



Sensors 2023, 23, 1533 9 of 29

Figure 3 illustrates the fundamental principle of mapping for the chromosomal length
NDNA. Depending on the length of the DNA, NDNA = 22i

points in the M-CSK constella-
tion are selected and mapped to the M-QAM constellation, which is depicted on the right
side of Figure 3 as clouds of points, with a total of 22i

points i = 0, 1, 2, 3 . . . shown.

Figure 3. General CSK/QAM assignment.

Figure 4 represents 4-CSK constellation mapping into 4-QAM. Although points in the
CIE 1931 xyY space can be assigned in any arbitrary order, the four 4-CSK stars correspond
to the four 4-QAM stars. Due to their proximity, it is more difficult to pass separator
hyperplanes to detect the four points of the 4-CSK constellation. On the right is a 4-QAM
constellation with more evenly spaced stars, which makes it simpler to deliver separator
planes to them.

Figure 4. 4-CSK constellation mapping into 4-QAM.

The centre of the colour bands can be expressed in CIE 1931 xyY space coordinates
as sR, sG, sB ∈ R2, which is known as the centre of band symbols. All colours that can be
reproduced by LEDs via additive mixing form a triangle in CIE xyY space with the vertices
sR, sG and sB.

The gamut of the system is the set of all colours that may be reproduced by the three
LEDs and is mathematically defined as the convex combination of the centre of band
symbols in the CIE xyY space, as shown in

G =
{

a1sR + a2sC + a3sB ∈ R2
}

; a1 + a2 + a3 = 1∧ ∀a1, a2, a3 ≥ 0 (7)

where G denotes the system’s gamut.
The explicit CIE xyY coordinates of the symbol sk are denoted as sk = [xk, yk]

T.
The symbol sk can be expressed as a radiant flux vector Φ = [ΦR, ΦG, ΦB]

T ∈ R3
≥0, where

ΦR, ΦG, ΦB represent the radiant fluxes to be emitted by the red, green and blue LEDs re-
spectively. The radiant flux vector Φ can be obtained by solving the system of Equation (8).
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xk = ΦRxR + ΦGxG + ΦBxB

yk = ΦRyR + ΦGyG + ΦByB

1 = ΦR + ΦG + ΦB

(8)

The centroid is determined by multiplying the four points (xk, yk)(xR, yR)(xG, yG)
(xB, yB) by their components and Φ, which enables the transmission of white light between
the points. For separator planes, such as using a support vector machine, it is simpler to
map these four points in a square constellation.

Using the cursors from the CSK, these points are mapped once more into a square
regular M-QAM constellation. Data are processed by the M-QAM modulator, which then
maps them into a plane with an in-phase and quadrature component.

s = a + jb where a, b ∈ {±1,±3, . . . ,±(d
√

Me − 1)} (9)

Suppose we have k cursors according to Equation (A2), which indicates that all 22i
, (i = 3)

M-QAM elements of constellation have been addressed. The fastest method would be
to undergo transmission in a single cycle, but this is unnecessary because transmittion
as a matrix 22i × 22i

, (i = 1) could occur, in which case the tables would be smaller
according to G.

Given a set of LEDs with 22i
colours with the same characteristics, except for hav-

ing different Semiconductor Photo Detectors (SPDs), given by Φ1(λ), Φ2(λ) ... Φ
22i (λ)

respectively, spatially grouped so that their positions in space can be approximated from a
sufficiently large distance and DPs, each with a spectral response R(λ) and surface area
AR and filtered by an optical filter of one of the 22i

colours with spectral gains of G1(λ),
G2(λ) . . .G

22i (λ), respectively, and spatially grouped in such a way that spatial positions
can be approximated from a sufficient distance, if the distance d between the LEDs and PDs
is large enough that a single emitter and receiver position is a reasonable approximation,
then the gain of the UM-VLC DC electro-optical channel from the i-th LED to the j-th PD
with i, j = 1, 2, 3, ...22i

can be given by:

Hel[i, j] = Hel
LoS[i, j] + Hel

NLoS[i, j] , (10)

where Hel
LoS[i, j] is the DC gain of the LoS link, which can be expressed as:

Hel
LoS[i, j] =

1
PT, i

∫
R(λ)A0, j(λ)Φi(λ) dλ (11)

= C (m + 1)AR

2πd2PT, i
ΩLoSΨLoS

∫
R(λ)Gj(λ)ζ0(λ)Φi(λ) dλ , (12)

where PT, i =
∫

Φi(λ) dλ. Similarly, Hel
NLoS[i, j] is the DC gain of the single-hop NLoS link,

which can be expressed as:

Hel
NLoS[i, j] =

W

∑
w=1

Hel
NLoS, w[i, j] (13)

=
1

PT, i

W

∑
w=1

∫
R(λ)Aw, j(λ)Φi(λ) dλ (14)

=
(m + 1)AR

2πPT, i

W

∑
w=1
Cw

Arefl,w

d2
1,wd2

2,w
Ω(w)

NLoS, iΨ
(w)
NLoS (15)∫

R(λ) ρw(λ)Gw,j(λ)ζw(λ)Φi(λ) dλ (16)
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=

(m+1)AR
2πPT, i

∑W
w=1 Cw

Arefl,w
d2

1,wd2
2,w

Ω(w)
NLoS, iΨ

(w)
NLoS×

∑λ=22i

λ=1 Cw R(λ) ρw(λ)Gw,j(λ)ζw(λ)Φi(λ) ,
(17)

It should be noted that the integral is discretised and that 22i
points are taken into

account. If it is considered that the optical filters do not depend on the angle of incidence
θw, the definition can be simplified to Gw, j(λ) ≡ Gj(λ). Ω(w)

NLoS, i depends on the i-th
LED, because light bouncing on the w-th reflector will have different angles. This is to
account for the irregularity of the underground tunnel walls, where a small shift in the
LS can have a large effect on the angle of reflection off the wall. Because the LEDs are
slightly separated from one another, light from different LEDs will bounce off the walls
independently. The channel impulse response for the UM-VLC channel between the i-th
LED and the j-th PD is then given by [71]:

h[i, j](t) = Hel
LoS[i, j] · δ

(
t− d

c

)
+

W

∑
w−1

Hcl
NLo S,w[i, j] · δ

(
t− d1,w + d2,w

c

)
, (18)

Given an optical power signal x(t) = [x1(t), x2(t), . . . x
22i (t)]T (W) as input, where

xi(t) is the optical power signal emitted by the i − th LED, for i = 1, 2, . . . , 22i
, then the

received photocurrent signal at the j− th PD, yj(t) (A) can be given by:

yj(t) =
22i

∑
i=1

h[i, j](t) ∗ xi(t) + nj(t), (19)

where nj(t) is the noise at the j-th PD with noise variance of σ2
j .

4.2. Galois Field Mapping/Galois Fields Demapping

This section describe how to convert a dsDNA image into a polynomial and vice
versa as well as how to colour-code strands or dsDNA fragments using M-CSK/M-QAM
modulation. A chromosome contains a single long molecule of DNA, only part of which
corresponds to an individual gene. We developed a simple DNA-based model to represent
the fields GF(p) and GF(pn), n > 1. It is based on the differential migration of dsDNA
fragments of different sizes in gel electrophoresis, which is a standard technique for dsDNA
fragments of different sizes that have previously been obtained by PCR. Here, the size
of a dsDNA fragment corresponds to the number of base pairs [bp] that are contained in
the fragment.

Each element r ∈ GF(p) is represented by a dsDNA fragment whose size is unique to
the element r. Therefore, only p dsDNA fragments are necessary to represent all elements
of GF(p). Table 1 shows this representation using dsDNA fragments of different sizes,
where the smallest size S0 is composed of one or more genes and the largest is Sp−1.

Table 1. DNA representation for elements in GF(p).

r ∈ GF(p) 0 1 2 ... p− 1

Size of DNA Fragment [bp] S0 S1 S2 Sp−1

Gel electrophoresis is used to visualize the DNA molecular representation of a nonzero
element αk ∈ GF(pn), which represents the coefficients of the polynomial expression given
for Equation (20), as shown in Table 2.
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Table 2. dsDNA fragment representation of αk performed by agarose gel electrophoresis.

Positions of the Coefficients αk ∈ GF(p)

Referential DNA Site n− 1 n− 2 . . . 2 1 0

Sp−1 x x x

. . .

S3 . . .

S2 x

S1 x

S0

The dsDNA fragments for each coefficient ai ∈ GF(p), i = 0, 1, . . . , n− 1 are loaded
into different slots of the agarose gel matrix. The slots and their respective columns are
numbered n− 1, n− 2, ..., 2, 1, 0 according to the order of powers αn−1, . . . , α2, α, 1 from left
to right. Then, an electric field is applied to force the molecules to migrate through the gel
and be separated by size.

αk = 2αn−1 + (p− 1)αn−2 + ... + α2 + (p− 1)α + (p− 1). (20)

For this purpose, chains of size S2 were loaded into slot n− 1, chains of size Sp−1 were
loaded into slot n− 2, and from slot n− 3 to slot 3, chains of size S0 were loaded. Finally,
chains of size S1 were loaded into slot 2, and chains of size Sp−1 were loaded into slots 1
and 0 . Thus, our model defines a unique DNA-based representation for each element of
GF(pn).

We should note that α0 = 1, and the null element 0 ∈ GF(pn) does not have a
representation as a power of α. Hence, the field GF(pn) has pn elements, which are stored
in a lookup table according to the power of each element.

Example 1. To construct the field GF
(
23), n = 3 a new element α is added to the field GF(2). α

is a root of the primitive polynomial P(x) = x3 + x + 1 with a degree of n = 3, which is used to
generate the elements of GF

(
23). Since α is a root of the polynomial P(α) = α3 + α + 1 = 0 then,

α3 = α + 1, α4 = αα3 = α(α + 1) and so on. The field GF
(
23) has 23 = 8 elements.

In Table 3, a α = α1 is introduced as a root, but α0 = 1 and 0 can also be introduced,
since they are do have representation in the field. In the case of a GF(216) field containing
216 = 256 elements, the same method can be utilised to organise the elements for use in
16x16 MIMO arrays.

Table 3. Generation of the polynomials from P(x) = x3 + x + 1.

Element GF
(
23) Polynomial Symbol

0 0 000

α0 1 001

α1 α 010

α2 α2 100

α3 α + 1 011

α4 α2 + α 110

α5 α2 + α + 1 111

α6 α2 + 1 101
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4.3. AI-Based Procedures to Replace Human Processing

In Section 4.2, the interaction between Artificial Intelligence algorithms and modula-
tion/demodulation was described. At both the transmitter and receiver, the Scikit-learn
Python module is employed [75].

4.3.1. Logistic Regression

The weighted sum of the input attributes is used in logistic and linear regressions.
However, the logistic regression bias has a binary output as opposed to a direct output.
According to Suykens [76], a logistic regression model predicts that if the probability is
less than 50%, it belongs to the negative class denoted by “A” or “0”, and if it is greater, it
belongs to the positive class denoted by “B” or “1”.

To find the value of the prediction, Equation (21) can be used:

∂

∂θj
MSE(θ) =

2
m

m

∑
i=1

(θT · x(i) − y(i))x(i)j , (21)

where m is the number of partial derivatives, x is the input, and y is the predicted value.
Equation (22) represents the logistic regression model’s estimated probability in vector form p̂:

p̂ = hθ(x) = σ(θT · x) , (22)

where θ is the vector of the model parameters, θT is the transpose of θ, hθ is the hy-
pothesis function, and σ(·), a logistic or logit sigmoidal function, generates a number
between 0 and 1, as shown in Equation (23).

σ =
1

1 + exp(−t)
(23)

After estimating the probability p̂ = hθ(x) that an instance x belongs to the positive
class, the Logistic Regression model can easily make its prediction ŷ. The logistic regression
model’s prediction is shown in Equation (24).

ŷ =

{
0 i f p̂ < 0.5
1 i f p̂ ≥ 0.5

(24)

Note that σ(t) < 0.5 when t < 0, and σ ≥ 0.5 when t ≥ 0, so a logistic regression
model predicts 1 if θT · x is positive and 0 if is negative.

4.3.2. Naive Bayesian with Gaussian optimisation

The Naive Bayesian with Gaussian optimisation (GaussianNB) method finds promising
parameter values by using a Gaussian process model of the objective function [77]. The Proba-
bility of Improvement (PI) is an intuitive strategy that can be calculated analytically by using
Gaussian processes to maximise the probability of improvement over the best current value [78]:

aPI(x; {xn, yn}, θ) = Φ(γ(x)) , (25)

γ(x) =
f (xbest)− µ(x; {xn, yn}, θ)

σ(x; {xn, yn}, θ)
, (26)

where f : χ→ R, xbest is the best current value, µ is its predictive mean function and σ is the
predictive variance function. In order to maximise the expected improvement over the best
current value, the Expected Improvement (EI) could also be calculated using a Gaussian process:

aEI(x; {xn, yn}, θ) = σ(x; {xn, yn}, θ)(γ(x)Φ(γ(x)) +N (γ(x); 0, 1)) , (27)

where aEI represents the acquisition function with the highest expected improvement, Φ(·)
represents the cumulative distribution function and N represents the normal distribution.
The upper confidence limit of Gaussian Processes (GP) seeks to exploit the concept of lower
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and upper confidence limits in the maximisation case in order to build acquisition functions
that minimise regret as optimisation progresses [79]:

aLCB(x; {xn, yn}, θ) = µ(x; {xn, yn}, θ)− κσ(x; {xn, yn}, θ) , (28)

where aLCB: χ→ R+ denotes the acquisition function, LCB is the lower confidence bound
and κ is tunable to balance exploitation versus exploration.

4.3.3. SVM Classifier

A support vector machine divides the elements of a set into different subsets known as
classes with the goal of finding the widest possible hyperplane that best separates these classes.
The margin can be seen in Figure 5. It is defined as the maximum width of the region parallel to
the hyperplane that has no interior data points. Equation (29) shows how a linear SVM predicts
the class of a new x instance by calculating the decision function wTx + b = w1x1 ++wnxn + b:
if the result is positive, the predicted class f (x) is the positive class (1); otherwise, it is the
negative class (0) [75]. b is the bias and w is the feature weight.

f (x) =
{

0 si wTx + b < 0
1 si wTx + b ≥ 0

(29)

To make it easier to separate the classes after this transformation, kernel functions
move the data to a different, usually higher, dimensional space, potentially simplifying
nonlinear complex decision boundaries in the assigned higher dimensional feature space
to make them linear. The data do not have to be explicitly transformed in this process, which is
known as a kernel trick [80]. A second-degree polynomial kernel is the function K(a, b) =

(
aTb
)2.

Based on some mapping φ, the kernel K corresponds to an inner product in a feature
space [81]. A kernel is a function in ML that computes the dot product φ(a)T−φ(b) by using
only the original vectors a and b without computing the φ transformation. The polynomial
kernel for polynomials of degree d is shown in Equation (30) [75].

K(a, b) =
(

γaTb + r
)d

(30)

where a and b are vectors in the input space, r ≥ 0 is a free parameter that compensates
for the impact of higher-order terms in the polynomial versus lower-order terms in the
polynomial, and γ is a scaling parameter.

When r = 0, it is said that the kernel is homogeneous. When d = 1 and r = 0 are
implemented, the result is identical to that of a linear kernel. If d is greater than one,
nonlinear decision limits are produced, with the degree of nonlinearity increasing as d
increases. Due to overfitting, d values greater than 5 are typically not recommended.
Figure 5 depicts the optimal hyperplane with a polynomial kernel separating the data,
where the light blue and brown dots represent data belonging to two distinct classes.
The segmented red lines represent the various hyperplanes that can be constructed to
partition data representing two classes between two point clouds. In a similar fashion, the
red line represents the hyperplane that maximises class separability.

Figure 5. Graph of a polynomial SVM showing the hyperplane separating the samples from the classes.
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4.3.4. Extra Trees Classifier

The Extra Trees Classifier (ETC), also known as extremely random trees, generates a
large number of decision trees, but the per-tree sampling is random. Tanha [82] used this
method to assemble a data set with unique samples in each tree. According to Geurts [83],
the geometric analysis generated by the ETC algorithm assumes a minimum number of
samples (nmin = 2). When the number of trees is M→ ∞, the models generated by the Extra
Trees algorithm appear to be linear. Thus, with the minimum sample condition nmin ≥ 2,
the algorithm can be extrapolated for the n-dimensional case. In this way, a continuous
multilinear approximation is obtained for the case of infinite samples N → ∞. In either
case, the expression presented in Equation (31) can be used, where xi = (x1,i, ..., xn,i) is a
n dimensional input vector, yielding yi as the output. To simplify the notation, we give
the notation presented in the Equation (32), where jth indicates the value of the sample, so
that ∀(i1, ..., in) ∈ {0, ..., N}n. For I(i1,...,in)(x), the characteristic function of the hyperplane
corresponds to the one presented in Equation (33).

lsN = {(xi, yi) : i = 1, ..., N} (31)

xj,(0) = −∞ and xj,(N+1) = +∞, ∀j = 1, ..., n (32)

[x1,i1 , x1,(i1+1)]× ...× [xn,(in), xn,(in+1)] (33)

This enables us to demonstrate that, as stated in Zhao [84], an infinite number of extra
trees will generate an approximation of the form presented in Equation (34). Thus, for fully
developed trees, the development shown in Equation (35) is shown.

ŷ(x) =
N

∑
i1=0

...
N

∑
in=0

I(i1,...,in)(x) ∑
X⊂{x1,...,xn}

λ(i1,...,in) ∏
xj∈X

xj (34)

ŷ(xi) = yi, ∀(xi, yi) ∈ ls (35)

A piecewise linear model is obtained for the specific case of a one-dimensional input,
as shown in Equation (36), where I(i)(x1) is the interval characteristic function, and the
values of λi,φ and λi,x1 are obtained from Equations (35) and (36).

ŷ(x) =
N

∑
i1=0

I(i1)(x) ∑
X⊂{x1}

λ(i1),X ∏
xj∈X

xj =
N

∑
i=0

I(i)(x1)(λi,φ + λj,s{x1}x1) (36)

4.3.5. Histogram Gradient Boosting Classifier

Decision trees also inspired gradient boosting, one of the most useful algorithms for
generating table structures and enabling predictive regression modelling, according to
Padhi [85]. There are two variants that are based on the operating system implementation:
Light Gradient Boosting (LGB) and GPU-accelerated XGBoost. LGB is a fast, distributed,
high-performance gradient boosting framework based on the decision tree algorithm
that can be used for ranking, classification and a variety of other ML tasks [86,87]. This
model reduces the learning process time by at least 20 times while maintaining the same
precision. According to Chen [88], the XGBoost algorithm boosts the GPU performance by
using perfect shuffling of indexes and data in parallel sums and GPU-accelerated sorting,
generating trees of all data concurrently for each iteration.

XGBoost is an enhanced version of the gradient boosting algorithm that is more
efficient and scalable. Automatic feature extraction is one of the characteristics that dis-
tinguishes XGBoost from other algorithms. XGBoost supports regularisation to prevent
overfitting and has the capacity to learn from nonlinear datasets. In addition, the paral-
lelisation feature enables XGBoost to utilise multiple CPU cores. It is one of the tree-based
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additive ensemble models that consists of a group of base learners. XGBoost can generally
be represented by:

F = (m1, m2, m3, m4 . . . mn), ŷi =
n

∑
t=1

mt(xi) (37)

where ŷi is the final predictive model, which is the combination of all weak learners, and x
is the input feature for each weak learner, i.e., m.

From the paper [87], we extracted the objective function for XGBoost, as given below:

Obj(θ) =
m

∑
i=1

L(zi, zi) +
T

∑
t=1

Ω( ft). (38)

In Equation (38), note that the objective function has two parts; the first part denotes
the loss function, i.e., L denotes the training loss of either the logistic or squared loss, and
the second part represents the addition of each tree’s complexity. zi is the actual value and
zi is the predicted value, whereas Ω is the regularisation term, T denotes the total number
of trees, and f is the function.

4.3.6. Model Evaluation

Figure 6 depicts a classification table displaying the various error types.

Figure 6. Outputs of the classification model.

The formula for calculating the recall parameter, which is relevant for the assessment
of type 2 errors or false negatives, is presented in Equation (39):

recall =
TP

TP + FN
, (39)

where TP stands for True Positives and FN stands for False Negatives [89].

5. Results Analysis

The interface illustrated in Figure 7 corresponds to Galois Field Mapping/Galois Fields
Demapping. During the phase of finding the ideal algorithm, the transmitter converts
images to polynomials (shown from left to right), while the receiver converts polynomials
to images (shown from right to left), as displayed in Figure 7. The time has come to reveal
the findings. First, the results of the channel based on CSK/QAM mapping will be shown,
followed by the SARS-CoV-2 Searching results of the model, and finally, the SARS-CoV-2
Operation results of the best model.

Figure 7. Galois Field Mapping/Galois Fields Demapping procedure.
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5.1. Results of the Channel Based on CSK/QAM Mapping

The communications channel is the source of all negative effects when collecting data
for the purpose of locating and implementing the optimal model. Traditionally, IEEE
802.15.7 specifies rules for designing M-CSK constellations and directly applying them for
modulation. However, the mapping defined in Section 4.1 can also be used to indicate
which cursor to map. Then, use a square constellation with better separation properties
can be used. Figures 8 and 9 illustrate the experimental results for N = 22i × 22i

, i = 0, 1.
Despite their two-dimensional representation in the CIE xyY plane, the null element points
can be aggregated with an integer cursor can be assigned to each of them, and a table can
be created in the cloud to provide copies at the transmitter and receiver for calculating
inverse mapping between the M-CSK and the M-QAM constellation.

Figure 10 shows the MIMO channel capacity for N = 22i × 22i
(i = 0, 1, 2, 3). In order

to get a greater spectrum efficiency for a longer chromosome, it has been demonstrated
that square constellations should be favoured due to their superior separation properties,
despite their exponentially increasing complexity.

Figure 8. CSK constellation for N = 22i × 22i
, i = 0.

Figure 9. CSK constellation for N = 22i × 22i
, i = 1.

Figure 10. MIMO channel capacity for N = 22i × 22i
(i = 0, 1, 2, 3).

It is feasible to transmit monochromatic photon streams. When coherent monochro-
matic frequencies are employed, energy is not wasted on phase incoherence effects, which
ordinarily result in self-destructive phase effects. Consequently, the outcomes are improved.



Sensors 2023, 23, 1533 18 of 29

Due to the fact that quantum objects do not require their attributes to be specified, a beam
of baseband light can arrive at the photodetector from a variety of angles other than a
coherent straight line. The use of a laser decreases costs because white light amplification
equipment is avoided due to the high concentration of energy in a single frequency tone.

In order to generalise the FSK channel to a MIMO channel [51], Figures 11 and 12 show
the output of the MIMO demodulator that will enter the “Galois Field demapping” process for
256-point QAM square constellation with SNR values of SNR = 60[dB] and SNR = 30[dB].

Figure 13 compares CSK/QAM mapping to QAM mapping by using the XGBoost
algorithm in terms of the BER for different SNR values with N = 22i × 22i

, i = 0, 1, 2, 3.
This simulation was carried out in 1[dB] steps for values up to SNR = 80[dB]. The BER
was computed within one cycle using the MMSE estimator.This procedure was repeated
10,000 times to accumulate the erroneous values for each of the SNR[dB] levels in an array.
In contrast to linear mapping, the combination of M-CSK and M-QAM mapping results
in nonlinear productions, i.e., it breaks the regularity of selecting the same points due to
the centroid calculation and the inclusion of points as the null element. As mentioned
in Section 4.3.5, the XGBoost algorithm produces the best results because it manages to
generate multiple trees and is the only one capable of learning a nonlinear dataset, because
it generates a new objective function. When the dataset is small, it cannot learn to predict
the values to come, for example, when N = 22i × 22i

, andi = 0, 1 points occur, although
it is seen to start working for N = 22i

, i = 3, but when the dataset increases, the gain is
significantly improved. For BER=10−3, gains of −10 [dB], −3 [dB], 3 [dB] and 5 [dB] occur
for N = 22i × 22i

, i = 0, 1, 2, 3, respectively. It is concluded that the square constellation
N = 22i × 22i

, i = 3 produces a greater benefit. When the data set is small, the algorithm is
unable to learn to forecast future values. Alternatively, the BER improves as the data set is
enlarged, making it simpler to separate states and creating a larger forest.

Figure 11. QAM constellation for N = 22i × 22i
, i = 3 on the MIMO channel, SNR = 60[dB].

Figure 12. QAM constellation for N = 22i × 22i
, i = 3 on the MIMO channel, SNR = 30[dB].
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Figure 13. BER at different SNR levels in a N = 22i × 22i
MIMO array for i = 0, 1, 2, 3.

5.2. Results SARS-CoV-2 Searching of the Model

Based on Section 4, this subsection analyses the proposed strategies in order to gather
the information required for model searching and the operation of the best model from
Section 5.3. The obtained biological material is subjected to the thermocycling process
depicted in Figure 1, and the results are subsequently deposited on the electrophoresis gel,
which is imaged after the reaction occurs. This is illustrated in Figure 14.

Figure 14. Image of the electrophoresis gel where px is the position of the horizontal pixel and py the
position of the vertical pixel.

In addition to the channel noise described previously, the sample includes a significant
amount of background noise. The use of a denoising convolutional auto-encoder model
contributes to enhancement of the sample quality [32]. Figure 15 presents a comparison
of the input and output images, with the output image containing less background noise.
The detection of bands is the second step in the image processing procedure. Figure 16
depicts the outcomes of applying the methodology. The bands can be segmented with the
data that will be subsequently analysed.

Figure 15. Comparison between the input image and the output of the convolutional denoising
autoencoder model, where px is the position of the horizontal pixel, py is the position of the vertical
pixel and Ig is the grayscale intensity of the pixel.
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Figure 16. Detection of bands in an electrophoresis sample where pAVG
y is the average value of py

and px is the horizontal value of the pixel.

Figure 17 depicts data obtained from one of the bands. The top image shows the
automatic clipping of the ladder band and the bottom image shows the average curve.
Figure 18 show the recognition of peaks in the average curve obtained from the bottom
image in Figure 17. This allows numerical representation through the method discussed
in Section 4.2. Figures 16 and 17 show the average bands PAVG

x and PAVG
y . This informa-

tion is used to train various mathematical models that enable band classification from
electrophoresis bands. Figure 19 depicts the outcome of applying the Pearson correlation
between the bands, demonstrating how the correlation of “band0” to the other bands is
too low in comparison with the other values, which are higher than 0.5%. This produces
an accuracy of 100%. Unfortunately, it cannot be used for the classification of positive and
negative samples due to the high level of error.

Figure 17. The top image shows the automatic clipping of the ladder band. The bottom image shows
the average curve, where py is the vertical position and pAVG

x is the average horizontal value px.

Figure 18. Recognition of peaks in the average curve obtained from the bottom image in Figure 17.
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Based on these data, classification models can be trained to differentiate between three
categories: ”Positive (+),” ”Negative (−)” and “Ladder”. The training results of the models
described in Section 4.3 are shown in Figure 20. In Table 4, it can be seen that the XGBoots
classifier has the highest training accuracy of 96.03% compared with the other models and
a recall rate of 99% for positive values.

Figure 19. Application of Pearson’s correlation on the different columns of the electrophoresis sample.

Figure 20. Comparison of the accuracy levels of the different trained classification models.

Table 4. Parameters obtained from the training of the XGBoost classifier.

Training Accuracy 100.0%

Model Accuracy Score 96.03%

Classification Report

precision recall f1-score support

Ladder 1.00 1.00 1.00 17

Positive (+) 0.95 0.99 0.97 85

Negative (−) 0.95 0.83 0.89 24

Accuracy 0.96 126

Macro avg 0.97 0.94 0.95 126

Weighted avg 0.96 0.96 0.96 126

5.3. Results SARS-CoV-2 Operation of the Best Model

ML involves the parallel calculation of all processes and the selection of the best
one; however, the processes may be conducted sequentially depending on the computer
available. Images may be presented to Galois Fields mapping or switched directly to
CSK/QAM modulation, depending on how the operation is configured, by entering the
cursor k from Equation (A2).

In this instance, the most important parameter to investigate is recall, which indicates
how frequently the model generates type 2 errors. In terms of both this metric and precision,
the XGBoost classifier model has the best performance. The associated parameters are
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displayed in Table 4. It can be seen that the model classifies the ladder correctly in all
instances. It is important to note that recall is computed using Equation (39). Figure 14
depicts the results of the application of this method to the image shown in Figure 21. This
corresponds to the first three boxes in the transmitter and the last three boxes in the receiver
in Figure 1, which were previously completed manually but are now performed by an
ML subsystem.

Figure 21. Results of the application of XGBoots.

The accuracy of trained models will always be determined by the criteria used by
the medical professional who prepared the data set. Due to uncertainty, the data can be
propagated to the VLC channel. At the time of operation, the developed system is merely
a tool; the results must be confirmed and interpreted by another health professional to
determine the presence or absence of SARS-CoV-2. The created system reduces sample
recognition times, allowing professionals to make more accurate diagnoses, and expands
the data set size.

6. Conclusions

In this research work, an innovative VLC-based method for detecting COVID-19 in
a subterranean environment was proposed. It was found that the unfavourable effects
of the underground channel on VLC communications can be mitigated through precise
mathematical modelling of the underground channel.

In order to get a higher spectrum efficiency for longer chromosomes, it has been
shown that square constellations should be favoured due to their superior separation
qualities within a photon stream. Transmission of monochromatic photon streams is an
additional alternative. Since no energy is expended on phase incoherence effects, which
generally result in self-destructive phase effects, when coherent monochromatic frequencies
are employed, the results improve. It was also established that employing a laser saves
money because there is no need for white light amplification equipment, often known
as a driver. In addition, it was revealed that mathematical scaffolding in the exponential
representation of DNA, in conjunction with the novel modulation and suitable channel
modelling, prevents the transmission of heavy images.

The XGBoost technique was found to be the most successful, since it generates a large
number of trees and is the only one that can learn a nonlinear data set by creating a novel
goal function. When N = 22i × 22i

, i = 0, 1 points are used. For example, the dataset is
too small for the algorithm to learn to predict future values, despite a slight improvement
when N = 22i × 22i

, i = 1 points are used. As the dataset expands in size, the gain increases
dramatically; this is something that linear models cannot achieve. For BER = 10−3, gains
of −10 [dB], −3 [dB], 3 [dB] and 5 [dB] were achieved for N = 22i × 22i

, i = 0, 1, 2, 3,
respectively. The conclusion is that the square constellation N = 22i × 22i

, i = 3 yields a
greater profit. During the searching phase, a classification algorithm was selected from
a pool of available options. For a total of 630 COVID-19 samples, the best model was
XGBoots, which displayed an accuracy of 96.03% and a recall rate of 99% for positive
values, placing its performance above that of the other models.
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Furthermore, the uncertainty in the data propagates to the channel, so the accuracy of
the trained models is determined by the criteria employed by the expert who creates the
dataset. Clearly, the only way to rectify this is to compile a dataset from multiple sources
so that it is complete and objective.

By extracting genetic information more efficiently, it is possible to classify the bands
present in electrophoresis samples by using ML and a three-state classification process to de-
termine whether the band corresponds to a COVID-19 positive, negative or ladder sample.
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Abbreviations

2D Two dimensional
3D Thee dimensional
AI Artificial Intelligence
BER Bit Error Rate
CIE Comission Internationale de l´Éclairage
COVID-19 Coronavirus disease 2019
CSK Colour Shift Keying
CSK/QAM Colour shift keying with quadrature Amplitude modulation
CxR Chest X-rays
DC Direct Current
DNA Deoxyribonucleic acid
DNN Deep Neural Network
dsDNA Double Strand DNA
ETC Extra Trees Classifier
FSK Frequency Shift Keying
GaussianNB Naive Bayesian with Gaussian optimisation
GP Gaussian Processes
IM/DD Intensity-modulation direct-detection
LED Light Emitting Diode
LGB Light Gradient Boosting
LoS Line-of-sight
LS Light source
M Modulation order
ML Machine Learning
MMSE Minimum mean square error
NLoS Non-Line-of-sight
NDNA Chromosome length
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OOK On–off keying
OWC Optical Wireless Communication
PI Probability of improvement
PCR Polymerase Chain Reaction
PDs Photo detector
QAM Quadrature amplitude modulation
RF Radio Frequency
RGB Red Green Blue
RNA Ribonucleic acid
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
SNR Signal-to-noise ratio
SPDs Semiconductor Photo Detectors
SVM Support vector machine
UM-VLC Underground Mining Visible light communication
UM-VLC SISO UM-VLC Single input single output
VLC Visible light communication
VLC/FSK Visible light communication/Frequency Shift Keying
VLS Virtual light source
WBD Water-borne Dataset

Appendix A

Reference LoS

HLoS = CG (m + 1)AR

2πd2 ΩLoSΨLoS ,

C =


η

sin2(θ0)
0 ≤ θ0 ≤ ΘFoV

0 θ0 > ΘFoV,

Reference NLoS

HNLoS,(1) =
(m + 1)AR

2π

W

∑
w=1
CwGw

Arefl,w ρw

d2
1,wd2

2,w
Ω(w)

NLoSΨ(w)
NLoS ,

Reference Scattering Model

Hscatter = lim
N→∞

(m + 1)AR ρs

2Nπ

N

∑
n=1

pn

d2
n

Ω(n)
scatter Π(θn) ,

Π(θn) =


1 0 ≤ θn ≤ ΘFoV

0 θn > ΘFoV.

pn =
kmie

s
ks

pmie(φn) +
kray

s
ks

pray(φn)

where: m is the Lambertian mode number,
AR is the PD surface area,
d is the distance between LS and PD,
G ∈ [0, 1] is the optical filter gain,
C ∈ [1,+∞) is the optical concentrator gain,
ΩLoS ∈ [0, 1] is a trigonometric expression that depends on the relative position, rotation
and tilt of the LS and PD, the half-power angle of the light beam, φ1/2, the Lambertian
mode number, m, and the field of vision angle of the PD,
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ΘFoV; and ΨLoS ∈ [0, 1] is a scaling factor which accounts for the degree of shadowing in
the LoS link
W is the number of reflectors, modelled as the generalized Lambertian virtual LSs, such
that for the w-th reflector,
Arefl,w is its surface area,
ρw ∈ [0, 1] is its reflectance,
d1,w is the distance from the LS to the reflector
d2,w is the distance from the reflector to the PD
Gw and Cw are the optical filter and the concentrator gain at the receiver, respectively,
accounting for the incident angle from the w-th reflector to the PD,
Ω(w)

NLoS ∈ [0, 1] is a trigonometric expression which depends on the relative position, rotation
and tilt of the LS, the w-th reflector and the PD
Ψ(w)

NLoS ∈ [0, 1] is a scaling factor that accounts for the degree of shadowing in the w-th
NLoS link. kmie

s is the scattering coefficient of the Mie scattering dust particles,
kray

s is the scattering coefficient of the Rayleigh scattering air molecules,
ks = kmie

s + kray
s is the total scattering coefficient,

pmie(·) is the Mie scattering phase function,
pray(·) is the Rayleigh scattering phase function.

Appendix B

Next, we briefly explain the method used for constructing an extension field GF(pn),
with n ∈ Z and n > 1, using GF(p) as the underlying field, which was the subject of our
research [29,30]. First, an irreducible polynomial Q(x) of degree n ∈ Z, n > 1 over GF(p)
is selected,

Q(x) = xn + qn−1xn−1 + . . . + q1x + q0,

where qi ∈ GF(p) for i = 0, 1, ..., n− 1. The polynomial Q(x) is called a primitive polyno-
mial. Let α be a root of Q(x), that is, Q(α) = 0. Then,

αn = q′n−1αn−1 + . . . + q′1α + q′0, (A1)

where q′i is the additive inverse of qi [29]. Next, αn+1 is constructed recursively as

αn+1 = α∗αn = α∗
[
q′n−1αn−1 + . . . + q′1α + q′0

]
αn+1 = q′n−1αn + . . . + q′1α2 + q′0α,

and the element αn is replaced using Equation (A1),

αn+1 = q′n−1

[
q′n−1αn−1 + . . . + q′1α + q′0

]
+ . . . + q′1α2 + q′0α,

then:

αn+1 = an−1αn−1 + . . . + a1α + a0,

where an−1 = q′n−1
∗q′n−1, . . . , a1 = q′n−1

∗q′1 + q′0 and a0 = q′n−1
′q′0. Thus, the nonzero ele-

ments of GF(pn) are generated as linear combinations of
{

1, α, α2, ..., αn−1} in the following
manner:

αk = an−1αn−1 + . . . + a1α + a0, (A2)

with k ≥ 0, ai ∈ GF(p), i = 0, 1, ..., n− 1.
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