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Abstract: The Chilean matorral is a heavily threatened Mediterranean-type ecosystem due to human-
related activities such as anthropogenic fires. Mycorrhizal fungi may be the key microorganisms to
help plants cope with environmental stress and improve the restoration of degraded ecosystems.
However, the application of mycorrhizal fungi in the restoration of the Chilean matorral is limited
because of insufficient local information. Consequently, we assessed the effect of mycorrhizal
inoculation on the survival and photosynthesis at set intervals for two years after a fire event in four
native woody plant species, namely: Peumus boldus, Quillaja saponaria, Cryptocarya alba, and Kageneckia
oblonga, all dominant species of the matorral. Additionally, we assessed the enzymatic activity of
three enzymes and macronutrient in the soil in mycorrhizal and non-mycorrhizal plants. The results
showed that mycorrhizal inoculation increased survival in all studied species after a fire and increased
photosynthesis in all, but not in P. boldus. Additionally, the soil associated with mycorrhizal plants
had higher enzymatic activity and macronutrient levels in all species except in Q. saponaria, in which
there was no significant mycorrhization effect. The results suggest that mycorrhizal fungi could
increase the fitness of plants used in restoration initiatives after severe disturbances such as fires
and, consequently, should be considered for restoration programs of native species in threatened
Mediterranean ecosystems.

Keywords: arbuscular mycorrhizal fungi; Mediterranean-type ecosystems (MTEs); sclerophyllous
forest; restoration; wildfires

1. Introduction

Mycorrhizal fungi form a symbiosis with approximately 92% of known vascular
plant species, according to recent estimations [1]. This interaction has several functions
for both participants. The more widely studied function is the nutritional one, in which
symbiotic fungi allow plants a more efficient nutrient (particularly N and P) and water
uptake, absorbing them from the soil and delivering them to the plant in exchange for
carbohydrates [2] and lipids [3–5]. Moreover, the increased nutrient and water uptake
favored by mycorrhization can result in increased photosynthesis [6,7], and ultimately,
increased growth and survival [7,8].

Consequently, this symbiosis can impact plant and fungal fitness, biogeochemical
cycles, plant and fungal diversity, and soil aggregation [9], being pivotal in the structuring
of the community [10,11]. Indeed, plants and their associated soil biota interact via multiple
feedback mechanisms modulating the community assembly and function [12]. Plants
interact directly with mutualists such as mycorrhizal fungi that affect establishment and
maintenance in the community [13], but there are also indirect feedbacks exerted by these
microorganisms via the modification of soil nutrient cycling [14]. Thus, mycorrhizal fungi
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must be considered in the restoration plans for disturbed ecosystems. Previous several
studies on a variety of ecosystems have shown positive restoration outcomes related to the
consideration of the symbiosis in terms of increments in plant growth and biomass, as well
as plant species richness and survival [13,15].

Mediterranean-type ecosystems (MTEs) are severely threatened worldwide due to an-
thropogenic factors, thus becoming a main conservation concern [16]. The Chilean matorral
(including the sclerophyllous forests) is one of those MTEs and occurs in Central Chile
from approximately 30◦ to 36◦ S [17]. This ecosystem is currently experiencing very signifi-
cant anthropogenic disturbances, such as land-use changes and intense wildfires [18–20].
Worryingly, this plant community is concentrated close to 2/3 of the total Chilean pop-
ulation [21], but it is under-represented in the national system of protected areas [22,23].
This is despite it having the highest vascular plant richness in the country, including many
endemic species [24,25].

As mentioned above, this MTE has suffered very intense and large-scale fires in
recent years, all of anthropogenic origin [26–28]. Fires in Mediterranean areas are not
uncommon, and in some MTEs are naturally occurring [29] and can have severe negative
consequences for biodiversity [30,31]. Fires can also, depending on the duration and
intensity, impact soil microorganisms, rapidly changing microbial communities [32], and
can affect other physicochemical aspects of the soil [33,34]. These changes can alter plant
communities severely, transforming community structure in the long term [35]. Fires
usually occur during summer, and in Chile, the post-fire natural regeneration of native
plants is limited, usually with advantages to introduce plant species that are adapted to
natural fires, particularly those from Australia and California [36,37]. Most native woody
plants lack specializations for post-fire germination, but some species can re-sprout [28,36].
In the long term, actions should be taken to ensure the restoration of the Chilean MTE
and avoid its further degradation after fires. Restoration initiatives in Chile have had very
limited success and are usually costly and inefficient [24,38] with Chile seemingly unable
to fulfill international agreements in this regard.

One possible solution for the restoration of MTEs after fires is the use of mycorrhizal
fungi. As stated above, the association with these soil microorganisms can increase nutrient
uptake, and confer plants increased stress tolerance [9,39]. After fires, soils tend to become
exposed and susceptible to erosion [40]. High radiation, low water retention/penetration,
and high-water stress can severely limit germination and re-growth of natural vegetation
post-fire [41,42]. Thus, mycorrhizal fungi can be a key element for the restoration process
by increasing plant performance in stressful conditions, improving water and nutrient
uptake [43], and improving biological [44] and physicochemical characteristics of the
soil [45,46]. Current knowledge of mycorrhizal fungi diversity and native plant-fungi
associations in the Chilean Mediterranean zone, and sclerophyllous forest in particular, is
very limited [47]. Thus, the effect of the mycorrhizal fungi, and principally mycorrhizal
symbiosis, on the physiological performance of native plants is seldom assessed and,
consequently, their application in restoration is very difficult to evaluate.

The aim of this study is to test the effect of mycorrhizal fungi from the sclerophyllous
forest on the survival of the dominant woody-species in this MTE after fire. Additionally,
we evaluated the foliar photosynthesis as well as the enzymatic activities and content of
macronutrient in the soil in mycorrhizal and non-mycorrhizal plants. These mycorrhizal
fungi could be essential for seedling establishment and overall plant performance. Thus,
information regarding the efficacy of mycorrhizal fungi application to the seedlings of
studied plant species could be essential for conservation and future restoration initiatives
in the MTE of Central Chile, especially after fires.
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2. Materials and Methods
2.1. Study Site and Target Species

The study site was located in the place called “Fundo los Perales” (33◦06′ S, 71◦37′ W)
located south-west of the city of Valparaíso, Chile. This place is characterized by a Mediter-
ranean climate with cold and rainy winters as well as dry and warm summers [17]. In
recent years, the area has experienced frequent and intense fires, all of anthropogenic origin,
with severely negative impacts to the local diversity [26–28,31]. The flora in the area is
typically Mediterranean and highly endemic [25]. The most conspicuous woody species
present in the community are Peumus boldus (Monimiaceae), Quillaja saponaria (Quillajaceae),
Cryptocarya alba (Lauraceae), and Kageneckia oblonga (Rosaceae). Thus, all four of these
woody plant species were examined in this study. In addition, those four plant genera form
mycorrhizal associations with arbuscular mycorrhizal fungi (AMF) consequently form the
arbuscular mycorrhiza (AM) symbiosis type [48].

2.2. Root Sampling and Fungal Inoculum

Roots from ten randomly selected individuals of each tree species were collected. All
trees were similar in height (approximately 2.5–3.0 m) and the distance between them was
at least 10 m, to ensure the independence of the samples. These samples were used as bio-
logical material to obtain the inoculum containing mycorrhizal structures (spores, hyphae,
and vesicles) to be utilized in the field experiments. Each fungal inoculum was prepared
using a solution of 75 g of ground root containing mycorrhizal structures (indicated above)
in 100 mL of distilled water. Roots from all individuals per species used to obtain the
inoculum were mixed in a single flask to obtain one inoculum mix per each of the four
target species.

2.3. Assessment of the Survival and Photosynthesis in the Inoculated and Non-Inoculated Trees

The effect of experimental inoculation with a mycorrhizal inoculum mix (see above)
on survival and net photosynthesis (A) was assessed at 0, 3, 6, 12, and 24 months after
transplants. A total of 50 seedlings of each of the four tree species were selected for
these measurements. Half of them were randomly assigned to the “with mycorrhiza”
treatment (M+), and the other half was assigned to the “without mycorrhiza” treatment
(M−). Individuals of each of these tree species were obtained from seeds collected at the
study site. Seeds were germinated and maintained in a greenhouse under semi-controlled
conditions (air temperature = 25 ± 3 ◦C and solar radiation = 1056 ± 96 µmol m−2s−1).
At the start of the experiment, the seeds of all individuals were washed and hydrated
with a mixture of NaCl (2%) and a systemic antifungal (Benlate) to avoid the presence of
microorganisms. Subsequently, half of the seedlings were irrigated with 100 mL/day of
the fungal inoculum solution (see above). Each seedling received its own inoculum mix
by manual irrigation. Individuals allocated to the treatment without mycorrhizae, only
received irrigation (tap-water) without inoculum. The inoculation procedure was repeated
3 times in a 21-day period to ensure symbiosis. A later validation of the effectiveness of the
inoculation was conducted using staining methods and a light microscope in a subsample
(5 roots from 5 individuals per treatment) previously to be allocated into the field. It was
considered a successful inoculation treatment when more than 75% and less than 5% of
the individuals showed some type of mycorrhizal structure. Thus, the individuals used in
our studies and assigned to the M+ and M− treatment showed more than 80% and less
than 5% of AM structures, respectively (Supplementary Table S1). The main AM structures
recorded after inoculation were mainly hyphae coils, vesicles, and/or arbuscules.
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Three-month-old plants were transplanted to 50-L plastic pots (one plant per pot)
containing a mixture of sand/native soil (1:1 v/v) as substrate and irrigated every two
days with 250 mL of tap water. All pots were specially rearranged every week to avoid
the effect of asymmetric solar incidence due to the shape of the glasshouse roof. Plants
were maintained in these semi-controlled conditions until they were five months-old, and
then were transported to the field to assess the effect of inoculation of mycorrhiza on
photosynthesis and the survival on tree species as well as on the soil nutrient properties.

In the field, for each tree species, five groups of five individuals (one per pot) with
mycorrhiza were established and another five groups were set up without them (total n = 50
seedlings per species). The pots were arranged in an area of 250 × 250 m. Individuals were
placed no less than 0.5 m apart from each other, to respect the typical lighting conditions
of each species. The experiment lasted for two years, and net photosynthesis as well
as survival percentage were recorded at 0, 3, 6, 12, and 24 months after transplant to
the field. To assess whether AM presence can improve some fitness-related traits, net
photosynthesis was measured on visually healthy leaves from the upper third of the plant.
Measurements were made on the same individual at midday each time with an infrared
gas analyzer (IRGA, Infra-Red Gas Analyzer, CIRAS-2, PP-Systems Haverhill, Amesbury,
MA, USA). During measurements, the leaf chamber was settled at 360 ppm, 25 ◦C, and
1000 µmol m−2s−1. We compared the survival percentage of seedlings at the same times as
the photosynthesis measurements were done. Mortality was assessed visually, assuring the
absence of green tissue in the individual plants. In the next survival assessment, all plants
were inspected again to corroborate/discard the initial evaluation.

2.4. Enzymatic Activity and Nutritional Effect of the Mycorrhizal Inoculation on the Soil

We tested the effect of mycorrhizae on nutritional properties of the soil by measuring
soil activity of three key enzymes (β-Glucosidase, urease, and dehydrogenase). The β-
glucosidase is involved in glucose degradation and increased carbon availability [49].
Urease is a key enzyme related to the efficiency of nitrogen assimilation [50]. Lastly,
dehydrogenase participates in maintaining cellular homeostasis, protein degradation, and
the control of reactive oxygen species (ROS) [51].

At 0, 6, and 24 months after the transplant of trees, we sampled 50 g of rhizo-
spheric soil from plants with and without mycorrhizal fungi to measure enzyme con-
centration. Enzymatic activity was measured following previously described methods [52].
β-Glucosidase activity was measured using 0.5 g of soil with added 0.5 mL of 4-Nitrophenil-
B-D-glucopyranoside 50 mM (PNG) as the enzymatic substrate. Activity of this enzyme
was thus measured as µg of P-Nitrophenol (PNP) per gram of PNG produced per hour
(g PNG g-1 PNP h-1). For the urease activity, we used 1 g of soil in a 0.64% v/v solution
of urea to obtain the amount of resulting NH4+. This was done measuring the solution
absorbance at 525 nm using a spectrophotometer. Results for urease were expressed as µg
N-NH4 g-1 h-1. Finally, dehydrogenase activity was measured also using 1 g of soil per
pot. For each sample (from each individual pot), we added 0.2 mL of a 0.4% v/v solution of
2-(p-Iodophenyl)-3-(p-Nitrophenyl)-5-Phenyl tetrazolium chloride (INT) as substrate. Thus,
dehydrogenase activity was registered as µg of reduced iodonitrotetrazolium formazan per
hour (INTF g-1 h-1).

Complementarily, soil content of macro-nutrient (N, P, K) was quantified in 6 samples
of 200 g of soil in both inoculated (M+) and not inoculated (M−) plants. Analyses were
performed with the samples collected at 24 months after the transplant of the plants.
Nutrient measurements were conducted in the Centro Tecnológico de Suelos y Cultivos at
Universidad de Talca, Talca, Chile.
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2.5. Statistical Analyses

To compare the effect of mycorrhiza on survival and net photosynthesis along time,
repeated-measurements ANOVAs were conducted. The assumptions of normality and
homogeneity of variances were tested using the Shapiro–Wilk and Levene tests, respec-
tively. In addition, we carried out a pairwise t-test using the Bonferroni correction method
to compare the effect of mycorrhizal inoculation on soil enzymatic activity (dehydrogenase,
β-glucosidase and urease) as well as for soil macro-nutrient contents (N, P, K). Differences
were considered significant at p < 0.05. The data were analyzed using the R environ-
ment [53]. Figures for survival, photosynthesis, enzymes, and soil nutrients were made
using the tidyverse R package [54]. Lastly, to characterize differences in enzymatic and
nutritional traits between inoculated (M+) and non-inoculated (M−) plants with AMF, for
each species we calculated Cohen’s f statistics as a measure of standard size effect (SES)
using the Cohen’s_f function from the effectsize R package [55], at 95% CI. Negative and
positive SES values indicate an increase and decrease in the enzymatic or nutritional traits
caused by AMF presence.

3. Results

Association with mycorrhizal fungi increased survival in Cryptocarya alba, Kageneckia
oblonga, Peumus boldus, and Quillaja saponaria (Table 1, Figure 1). In addition, the interaction
Time × Treatment was significant for C. alba and P. boldus, indicating that although the
survival decreased in both treatments with time, this pattern was remarkably in those
treatments without the inoculation with mycorrhizae (Table 1, Figure 1a,c). Although, K.
oblonga exhibited a greater survival percentage with the presence of mycorrhizae, a similar
trend was maintained over time (Figure 1b).

Table 1. Results of two-way repeated measures ANOVA for the survival for the four tree species.
Main factors: Time, AMF treatments, and their interaction. Degrees of freedom (d.f.), F-values, and
p-values are shown.

Species Factor d.f. F-Value p-Value
Time 4, 40 148.53 <0.001
Treatment 1, 40 144.11 <0.001Cryptocarya alba

Time × Treatment 4, 40 9.1 <0.001
Time 4, 40 123.72 <0.001
Treatment 1, 40 30.41 <0.001Kageneckia oblonga

Time × Treatment 4, 40 3.17 0.72
Time 4, 40 110.96 <0.001
Treatment 1, 40 7.04 <0.05Peumus boldus
Time × Treatment 4, 40 4 <0.05
Time 4, 40 124.68 <0.001
Treatment 1, 40 20.48 <0.001Quillaja saponaria

Time × Treatment 4, 40 1.88 0.133

Additionally, mycorrhizal fungi also increased photosynthesis in all species of trees
(Figure 2). On the other hand, the interaction between Time× Treatment was significant for
C. alba, P. boldus, and Q. saponaria (Table 2), since photosynthesis was increased with time
but with higher intensity in those individuals with a presence of mycorrhiza (Figure 2a,d).
Nevertheless, the photosynthesis for P. boldus was higher in the treatment without AM
fungi (M−) in some measurements (Figure 2c). Contrarily, in K. oblonga, there were no
statistical differences between the interaction Time × Treatment (Table 2), although the
photosynthesis was higher in the treatment with AM fungi (M+) in almost all measurements
(Figure 2b).
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Figure 1. Survival in C. alba (a), K. angustifolia (b), P. boldus (c), and Q. saponaria (d), four dominant
woody plant species from the Chilean Mediterranean ecosystem (MTE), after a fire with (red bars)
and without (grey bars) inoculation with AMF. Values represent means (±1SE). Significant differences
(pairwise t-test; Bonferroni correction) between treatments are represented with * p < 0.05; ** p < 0.01;
*** p < 0.001.

Table 2. Results of two-way repeated measures ANOVA for photosynthesis for the four tree species.
Main factors: Time, AMF treatments, and their interaction. Degrees of freedom (d.f.), F-values, and
p-values are shown.

Species Factor d.f. F-Value p-Value
Time 4, 40 26.30 <0.001
Treatment 1, 40 286.62 <0.001Cryptocarya alba

Time × Treatment 4, 40 28.36 <0.001
Time 4, 40 28.37 <0.001
Treatment 1, 40 103.88 <0.001Kageneckia oblonga

Time × Treatment 4, 40 3.39 0.054
Time 4, 40 13.42 <0.001
Treatment 1, 40 22.62 <0.001Peumus boldus
Time × Treatment 4, 40 7.02 <0.001
Time 4, 40 67.84 <0.001
Treatment 1, 40 269.57 <0.001Quillaja saponaria

Time × Treatment 4, 40 19.54 <0.001

At last, association with mycorrhizal fungi increased soil enzymatic activity of de-
hydrogenase, β-glucosidase, and urease, in C. alba, K. oblonga, and P. boldus, but not in
Q. saponaria (Table 3, Supplementary Figure S1) after 24 months. Furthermore, we found
significant differences in the effect of mycorrhizal treatments, time, and their interaction
(Time × Treatment), in dehydrogenase, β-glucosidase and urease, for C. alba, K. oblonga and
P. boldus (Table 3, Supplementary Figure S1). Similarly, inoculation with mycorrhizal fungi
significantly increased soil macronutrients, in C. alba, K. oblonga, and P. boldus, but not in Q.
saponaria (Table 4, Supplementary Figure S2) after 24 months of transplantation of trees.
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differences (pairwise t-test; Bonferroni correction) between treatments in all times measured are
represented with ** p < 0.01; *** p < 0.001.

Table 3. Results of two-way repeated measures ANOVA on enzymes for the four tree species. Main
factors: Time, AMF treatments, and their interaction. Degrees of freedom (d.f.), F-values, and p-values
are shown.

(a) Cryptocarya alba
Enzyme Factor d.f F-value p-value

Dehydrogenase

Time 2, 12 212.64 <0.001

Treatment 1, 12 591.50 <0.001

Time × Treatment 2, 12 240.93 <0.001

β-Glucosidase

Time 2, 12 730.94 <0.001

Treatment 1, 12 1410.62 <0.001

Time × Treatment 2, 12 649.06 <0.001

Urease
Time 2, 12 87.30 <0.001

Treatment 1, 12 90.00 <0.001

Time × Treatment 2, 12 29.10 <0.001
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Table 3. Cont.

(b) Kageneckia oblonga
Enzyme Factor d.f. F-value p-value

Dehydrogenase

Time 2, 12 126.25 <0.001

Treatment 1, 12 126.87 <0.001

Time × Treatment 2, 12 63.42 <0.001

β-Glucosidase

Time 2, 12 871.79 <0.001

Treatment 1, 12 368.58 <0.001

Time × Treatment 2, 12 220.28 <0.001

Urease
Time 2, 12 45.89 <0.001

Treatment 1, 12 43.61 <0.001

Time × Treatment 2, 12 12.52 <0.01
(c) Peumus boldus
Enzyme Factor d.f. F-value p-value

Dehydrogenase

Time 2, 12 204.97 <0.001

Treatment 1, 12 72.00 <0.001

Time × Treatment 2, 12 42.84 <0.001

β-Glucosidase

Time 2, 12 401.77 <0.001

Treatment 1, 12 47.69 <0.001

Time × Treatment 2, 12 51.80 <0.001

Urease

Time 2, 12 692.69 <0.001

Treatment 1, 12 1508.10 <0.001

Time × Treatment 2, 12 900.46 <0.001
(d) Quillaja saponaria
Enzyme Factor d.f. F-value p-value

Dehydrogenase

Time 2, 12 111.65 <0.001

Treatment 1, 12 2.53 0.41

Time × Treatment 2, 12 0.30 0.98

β-Glucosidase

Time 2, 12 3678.07 <0.001

Treatment 1, 12 399.87 <0.001

Time × Treatment 2, 12 286.62 <0.001

Urease

Time 2, 12 94.04 <0.001

Treatment 1, 12 0.01 0.99

Time × Treatment 2, 12 0.02 0.98

In addition, we detected that overall enzymatic activity as well as macronutrients
were higher in the soil of mycorrhizal plants (M+) compared to non-inoculated plants
(M−). This was the same with C. alba, K. oblonga, and P. boldus and was evident for all
three tested enzymes (dehydrogenase, β-glucosidase, and urease) and macronutrients (N,
P, and K), showing a high effect size of mycorrhization on these soil traits (Table 4, Figure 3).
Contrarily, we found no increase in the enzymatic activity or macronutrients in the soil of
inoculated plants of Q. saponaria, where the effect size was nearly zero (Table 4, Figure 3).
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Table 4. Results of t-test of macro-nutrients for the four tree species inoculated (M+) and not
inoculated (M−) with AMF. Degrees of freedom (d.f.), t-values, and p-values are shown. Significant
differences are denoted in red color.

d.f. t-Test p-Value
(a) Cryptocarya alba
Nitrogen 8 18.62 <0.0001

Phosphorus 8 11.41 <0.0001

Potassium 8 11.56 <0.0001
(b) Kageneckia oblonga
Nitrogen 8 10.96 <0.0001

Phosphorus 8 14.62 <0.0001

Potassium 8 4.10 =0.0034
(c) Peumus boldus
Nitrogen 8 8.97 <0.0001

Phosphorus 8 3.92 =0.0044

Potassium 8 5.10 <0.0001
(d) Quillaja saponaria
Nitrogen 8 1.25 =0.2460

Phosphorus 8 0.25 =0.8031

Potassium 8 0.39 =0.7010
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Figure 3. Effect size of (a) enzymatic activity and (b) soil nutritional content in four dominant woody
plant species from the Chilean Mediterranean ecosystem (MTE), after a wildfire inoculated (M+) and
not inoculated (M−) with AMF. SES with 95% CI measured after 24 months for urease, β–glucosidase,
and dehydrogenase are shown. A mean effect size is significantly different from zero when CIs do not
overlap zero. Negative (or positive) effect sizes indicate that inoculated plants (M+) have on average
greater (or lesser) enzymatic activity or soil nutritional content than not inoculated plants (M−).
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4. Discussion

All tree species included in this study showed greater survival at the end of transplant
experiments when inoculated with their own mycorrhizal fungi. Previous studies in other
MTEs have shown a similar positive impact on plant survival when plants are inoculated
with native mycorrhizal fungi [56,57], indicating that mycorrhizal fungi are a promising
tool for the restoration of MTEs, and in sclerophyllous forests in particular.

Additionally, the association with mycorrhizal fungi increased photosynthesis in three
out of the four studied species, Cryptocarya alba, Kageneckia oblonga, and Quillaja saponaria,
dominant tree species of the sclerophyllous forest of Central Chile [17,58]. This positive
effect of mycorrhiza on photosynthesis has been found for other plant species [6,59] and
could be related to increased stomatal conductance and water-use efficiency [6,60,61]
and/or an increased photochemical efficiency [62], particularly in the dry conditions of the
late spring–summer in MTEs, when fires are more likely to occur. In contrast, Peumus boldus
decreased its photosynthesis when inoculated with mycorrhizal inoculum used in this
experiment. This could be due to an incompatibility between this species and that specific
fungal partner, or that the mycorrhizal association triggers signal pathways that result
in reduced physiological performance. A negative effect of mycorrhizal fungi has been
reported on highly colonized plants, when the mutualism can turn into parasitism with
negative consequences for the plant depending on the fungal species and environmental
conditions [63,64]. Alternatively, a negative effect of fungal endophytes on mycorrhizal
fungi has been recorded, suggesting that competition may occur among them [65,66]. In
fact, Liu et al. [67] showed that plants previously infected with fungal endophytes decrease
their mycorrhizal colonization, negatively affecting the host plant-growth, depending
on the nutritional status and fungal strain. In our case, P. boldus showed a frequency of
mycorrhizal infection similar to any other tree species, but nearly double fungal endophytes
(Supplementary Table S1). Thus, the high frequency of fungal endophyte could negatively
affect the mycorrhizal inoculation, which in turn could help explain the relative low values
of enzymatic activity, soil nutrients, and photosynthesis recorded in P. boldus.

On the other hand, enzymatic activity in the soil, evaluated in three key enzymes,
increased in all mycorrhizal plants, except in Q. saponaria where only β-Glucosidase activity
was influenced by mycorrhization. This result indicates that mycorrhization increases soil
biological activity and likely available nutrients for the plant. This concurs with findings
in previous studies that show an increased enzymatic activity and overall soil microbial
activity in mycorrhizal plants [68]. These can produce a synergistic effect of mycorrhizal
fungi and a beneficial bacteria present in the soil enhancing plant survival and performance,
probably due to an increased nutrient availability and antibiotic effect against pathogenic
microorganisms [44,69,70]. Indeed, the soil nutrients increased in three of four tree species
assessed when inoculated with mycorrhizal. Those trees that showed an enhancement in
the nutritional status of soil were the ones that showed an increased enzymatic activity. In
fact, the only tree species (Q. saponaria) without any effect on most of the enzymes assessed
was the same species without improvement in the nutritional status of soil. Thus, our
results could suggest that mycorrhizal inoculation could modulate in a concerted way the
enzymatic activity and nutritional status of soil for inoculated trees.

Mycorrhizal symbiosis has often been interpreted as a mutualistic association, but the
effects on plants vary within a parasitic-mutualistic continuum [71,72]. The symbiosis might
be established because it can help plants cope with stressful environments [73], and/or
because the plant constitutes an important habitat for the mycobiont [74]. Here, we found
that mycorrhizal fungi had a positive nutritional effect on the plant and that may account, at
least in part, for the positive effect in survival and photosynthesis. However, the symbiosis,
and its derived effects, may occur due to other drivers [75]. Positive effects of mycorrhizal
fungi on plants have been widely reported [6,8,76,77]. Association with mycorrhizal fungi
is related to increased water and nutrient uptake, physiological performance, growth, and
tolerance to biotic and abiotic stress [6,8,73,76–78]. All of these factors can result in an
increase in survival, especially, as mentioned above, in the dry summer of Central Chile.



J. Fungi 2023, 9, 421 11 of 15

Overall, those trees that exhibited improved nutritional and enzymatic status levels
were the same ones that demonstrated an increase in survival. Thus, mycorrhizal symbiosis
could be used as a tool for increasing restoration success after fires in the Chilean MTE.
This is highly relevant since MTEs, including the MTE in Central Chile, are considered bio-
diversity hotspots [79]. Climate change, forestry with pyrogenic species, and a prolonged
drought have increased dry biomass and the likelihood of fires in Central Chile [80–82],
giving birth to one of the most severe fires registered in recent history in 2017 [83]. Initia-
tives to restore the degraded MTE in Central Chile after those intense and extensive fires
have had limited success due to economic, ecological, and cultural reasons [38]. Here, we
demonstrate that inoculation with mycorrhizal fungi could greatly enhance the likelihood
of success at a relative low cost, solving at least two of the main issues limiting restoration in
Chilean matorral. In fact, mycorrhizal plants have been shown to be a viable and successful
strategy for the restoration of other MTEs [84–86]. Advances in identification and inoculum
production could further promote the role of mycorrhizal fungi in restoration.

A key next step in moving forward would be to identify the mycorrhizal species
associated with the plant species investigated here [87]. If these woody plants have a
similar mycorrhizal species composition, it could suggest a common mycorrhizal network
in the Chilean MTE [43]. Since the Chilean matorral is constantly threatened by human-
related factors [16], particularly intense human-provoked fires, the great habitat loss and
direct loss of biodiversity might be recovered by planting target species near existing
plants that could serve as an inoculum source of beneficial fungi. This is promising since
evidence indicates that local fungi are more beneficial than commercial inoculum for plant
restoration [88]. Additionally, complementary strategies could be used to improve the
restoration success in highly perturbated zones as those affected by wildfires. Recently,
Gerrits et al. [15] performed a meta-analysis synthesizing data from field experiments and
their respective reference ecosystems across four continents. In this study, it is evidenced
that soil translocation—including the microorganisms—can be a more successful restoration
method than only with the use of propagules or seedlings. Thus, inoculation with native
mycorrhizal could be part of a more integrative method to carry out successfully different
restoration initiatives.

Thus, the use of whole native soils containing some selected mycorrhizal fungi could
be a viable strategy for improving the restoration success of woody species in the MTEs after
fire events. In recent years, symbiotic fungi have shown a high potential as biotechnological
tools to improve plant performance and survival, especially under stressful conditions [6,
89,90]. In the dry conditions of the late spring and summer of MTEs, fires are likely to keep
occurring with an ever-increasing frequency, especially considering climate change and
current land-use changes [91]. Inoculation with mycorrhizal could be a key strategy to
improve the survival of the seedlings of native species in much needed restoration and
propagation initiatives—at least—in the Chilean MTE, especially considering international
accords such as REDD+, Nationally Determined Contributions, Bonn Challenge, and the
Initiative 20 × 20 (see [38]), as well as the global commitments on the conservation of
biodiversity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jof9040421/s1, Table S1: Frequency of occurrence (%) of mycorrhizal
structures and fungal endophytes present in four trees of the Chilean matorral in both inoculated
(M+) and non-inoculated (M−) treatment. Five individuals and five different roots were selected
per each tree species. Figure S1: Enzymatic activity for dehydrogenase (D), β-glucosidase (G), and
urease (U) in four dominant woody plant species from Chilean Mediterranean ecosystem (MTE)
measured at 24 months after a wildfire inoculated (M+) and not inoculated (M−) with AMF. Figure S2:
Soil macro-nutrients associated to four dominant woody plant species from Chilean Mediterranean
ecosystem (MTE) measured at 24 months after a wildfire inoculated (M+) and not inoculated (M−)
with AMF.

https://www.mdpi.com/article/10.3390/jof9040421/s1
https://www.mdpi.com/article/10.3390/jof9040421/s1
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