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Simple Summary: Breast cancer is one of the most common health problems in the world. As a
result, governments and researchers in different countries are trying to help prevent the disease. In
this work, we develop a clinical decision support methodology based on machine learning tools. This
methodology helps identify breast cancer patients and determine the risk factors for this disease.
In addition, the proposed strategy can help detect the disease in its early stages using modern
easy-to-interpret machine learning tools.

Abstract: Worldwide, the coronavirus has intensified the management problems of health services,
significantly harming patients. Some of the most affected processes have been cancer patients’
prevention, diagnosis, and treatment. Breast cancer is the most affected, with more than 20 million
cases and at least 10 million deaths by 2020. Various studies have been carried out to support the
management of this disease globally. This paper presents a decision support strategy for health teams
based on machine learning (ML) tools and explainability algorithms (XAI). The main methodological
contributions are: first, the evaluation of different ML algorithms that allow classifying patients with
and without cancer from the available dataset; and second, an ML methodology mixed with an XAI
algorithm, which makes it possible to predict the disease and interpret the variables and how they
affect the health of patients. The results show that first, the XGBoost Algorithm has a better predictive
capacity, with an accuracy of 0.813 for the train data and 0.81 for the test data; and second, with
the SHAP algorithm, it is possible to know the relevant variables and their level of significance in
the prediction, and to quantify the impact on the clinical condition of the patients, which will allow
health teams to offer early and personalized alerts for each patient.

Keywords: machine learning; explainable artificial intelligence; risk factors; breast cancer prevention;
decision support systems

1. Introduction

According to Sung et al. [1], in 2020, cancer was one of the main diseases of people
in the world, with around 20 million cases and at least 10 million deaths. Undoubtedly,
it is one of the main concerns of countries and health services. In addition and due to
the COVID-19 pandemic, health services have become even more stressed (e.g., the case
of oral cancer in India Gupta et al. [2], cancer diagnostic delay in northern and central
Italy, cited in Ferrara et al. [3], and substantial increases in the number of avoidable cancer
deaths in England, mentioned in Maringe et al. [4]), the aforementioned, and according to
authors such as Spicer et al. [5], González-Montero et al. [6] in the area of cancer and other
complex diseases.

On the other hand, different authors, such as Saini et al. [7], Nolan et al. [8], Collabo-
rative et al. [9], and others, have indicated that the treatment of some cancer patients has
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been interrupted, and the pandemic has increased their negative consequences. In fact, Ric-
ciardiello et al. [10] points out that due to waiting for treatment, deaths have increased by
12%. Therefore, it is dramatically important to timely detect and treat this type of disease in
the population, that is, to anticipate complex patient situations. For this reason, COVID has
taken a lot of time and attention from the clinical team, negatively impacting patients with
other types of diseases, generating delays in care and in terms of confirming the diagnosis,
as pointed out by the authors Picchio et al. [11], Radfar et al. [12], and others. For these
reasons, using different methodologies and tools to prevent and detect this disease early is
important, helping the clinical team and patients.

According to the World Health Organization (WHO) https://www.who.int/news-
room/fact-sheets/detail/cancer (accessed on 15 February 2023), cancer is one of the leading
causes of death worldwide, with almost 10 million deaths in 2020. In addition, the most
common cancers are breast, lung, colon and rectal, and prostate cancer, of which about a
third of deaths are due to tobacco use, high body mass index, alcohol use, low fruit and
vegetable intake, and lack of physical activity. The most common in 2020 (in terms of new
cases of cancer) were breast (2.26 million cases); lung (2.21 million cases); colon and rectum
(1.93 million cases); prostate (1.41 million cases); skin (non-melanoma) (1.20 million cases);
and stomach (1.09 million cases), and the most common causes of cancer death in 2020
were lung (1.80 million deaths); colon and rectum (916,000 deaths); liver (830,000 deaths);
stomach (769,000 deaths); and breast (685,000 deaths). This quantification implies that the
problem is so important that governments worldwide must continue working on actions
and political measures to advance in this regard.

For our work, we are concentrating on breast cancer to consider the most important
number of cases globally. Authors such as Garcia et al. [13], Chavez et al. [14] show that
over 1.3 million cases of invasive breast cancer are diagnosed worldwide, and more than
450,000 women die from breast cancer annually. However, in the US, Chavez et al. [14]
show that breast cancer has declined due to earlier detection due to improved adjuvant
therapy and, more recently, decreased incidence due to decreased cancer rates.

Machine learning (ML) belongs to artificial intelligence, which focuses on machine
learning from data. ML draws on different fields, ranging from statistics, mathematical
algorithms, and data structures to deriving predictions and rules that support humans. ML
has been applied in different areas, and its applications are very wide. They include, e.g.,
the prediction of the length of stay of cardiac patients in hospitals (Hachesu et al. [15]),
classification of disease, cited by Saranya and Pravin [16] where the authors propose a
sensitivity analysis for ML-based heart disease classification or instance, classifying chronic
patients in risk for medical care using a lot of ML tools (Silva-Aravena et al. [17]), among
many others in the health field.

The indicated strategies require the ability to interpret the predictions proposed by
the algorithms, which is studied in a subfield of ML called explainable artificial intelligence
(XAI) (see, for example, Madanu et al. [18], Loh et al. [19], Panigutti et al. [20]). Interpretabil-
ity can significantly influence the decision to use a particular model; researchers can use
a simpler model for complex problems or use ones requiring less computing power. In
addition, justifying specific results that can produce valuable information that people can
analyze and understand to produce knowledge and help better decision making.

Regarding the early detection of breast cancer, some authors in the world have been
working with some sophisticated techniques and methodologies, such as the machine learning
approach and others (see., e.g., Osareh and Shadgar [21], Ahmad et al. [22], Yue et al. [23],
Ganggayah et al. [24], Rajendran et al. [25], Ming et al. [26], Rajendran et al. [27], Chaurasia
and Pal [28], Naji et al. [29], Rabiei et al. [30], Zeng et al. [31]), which has allowed them to help
predict and classify different types of diagnoses, estimate the survival rate, and provide clinical
follow-up to patients with breast cancer that facilitate decision making by the health team in the
aid of patients. Some applications include the XAI algorithm, favoring health team knowledge
and their decision making (see Idrees and Sohail [32], Rodriguez-Sampaio et al. [33]).

https://www.who.int/news-room/fact-sheets/detail/cancer
https://www.who.int/news-room/fact-sheets/detail/cancer
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Other diverse strategies have been studied to manage breast cancer, such as machine
learning (see, e.g., Nindrea et al. [34], Magna et al. [35], Acevedo et al. [36], Yu et al. [37]),
Delphi techniques (Iunes et al. [38]), spatial autocorrelation (Durán and Monsalves [39]),
and medical techniques such as genetic epidemiology, chemotherapy, radiotherapy, telere-
habilitation (see, e.g., Ramírez-Parada et al. [40], Zavala et al. [41], Mella-Abarca et al. [42],
Valverde-Ampai et al. [43]), among others.

In our methodology presented in this paper, we propose a novel methodology to clas-
sify breast cancer using a machine learning algorithm embedded with an XAI technique for
Indonesian patients. This strategy was developed so that health teams provide information
and preventive actions to patients who have yet to develop the disease of breast cancer.
In addition, the methodological proposal serves as input for physicians to address the
best treatment for patients classified with the disease and with the diagnosis confirmed by
clinical examinations. In both cases, the methodology is used only as a support strategy for
the clinical actions implemented by the health teams in each case.

Our main contributions to this work are as follows: First, a benchmarking strategy
that allows selecting the best ML model, using some indicators such as accuracy, precision,
and recall to classify patients with and without breast cancer from a set of data on the
reproductive health of Indonesian women, high-fat diets, and risk factors for body mass
index. Finally, the second contribution is an automated and hybrid methodology based on
an embedded ML schema with an XAI algorithm. The mix, ML + XAI, makes it possible to
predict the state of each patient, follow prevention actions, and know which variables and
how they can affect each patient’s medical condition.

This paper is organized as follows. Section 2 presents related literature concerning the
techniques and methods used to manage breast cancer patients’ risk. Section 3 presents the
main methodology used in our work. The results obtained from our strategy are presented
in Section 4. A section of discussion is presented in Section 5. Finally, in Section 6, we draw
conclusions and make suggestions for future work.

2. Related Literature

Below, we present how breast cancer is managed and prevented worldwide and how it
has intensified with the pandemic. In addition, we show the various proposals for strategies
in the state-of-the-art and the gaps that justify the choice of our proposed methodology.

2.1. Impact of COVID-19 for Managing Cancer in the World

For Cheng et al. [44], the cancer health problems of the population have been one of the
main challenges of public policies, both in the clinical and budgetary spheres. According
to Flores et al. [45], this challenge becomes more complex during the pandemic. This
situation, such as the inability to manage the cancer health problems of patients, generates
important gaps between the health demand and available resources (Obek et al. [46], Levit
et al. [47], Abu-Odah et al. [48], Hwang et al. [49]).

Authors, such as Okereke et al. [50] and others, point out that the daily burden experi-
enced by health services added to the demand for attention to increasingly complex prob-
lems, such as cancer and others (Elkaddoum et al. [51], Al-Quteimat and Amer [52]), and the
reorganization of the medical supply as a result of the pandemic (see, e.g., Radfar et al. [12])
generates an unavoidable problem: waiting lists in those processes, such as cancer, are not
related to the health emergency caused by COVID-19 (see, e.g., Sorrentino et al. [53], de la
Viña et al. [54], Cadili et al. [55]). In addition, Lo et al. [56] mention that the cancer wait-
ing time is longer due to COVID-19 and that according to Greenwood and Swanton [57],
31,000 fewer patients started treatment for cancer across the UK between April and August
2020 in the pandemic period, compared with the same period in the previous year. Authors
such as Sud et al. [58], Malagón et al. [59] point out that while cancer patients wait, health
conditions worsen due to the risk of tumors progressing, and in extreme cases, waiting can
cause their death.
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So many authors, such as Vourganti et al. [60], Lu et al. [61], Janas [62], Keenan and
Frizelle [63], before and after the pandemic, have been working on different methodologies,
techniques, and tools for improving and detecting cancer episodes in patients. Other
authors, such as Zhu et al. [64], Leung et al. [65], have developed applications to predict if
patients will have cancer in the future.

2.2. Strategies for the Prevention and Management of Breast Cancer

Various strategies have been developed to manage cancer in health services. For
instance, Adams et al. [66] developed a lung nodule management strategy that combines
with an artificial intelligence malignancy-risk score, achieving savings per patient assessed.
Others, such as Osareh and Shadgar [21], Yue et al. [23], Ming et al. [26], Chaurasia and
Pal [28], Naji et al. [29], Rabiei et al. [30], Nindrea et al. [34], Acevedo et al. [36], Santiago-
Montero et al. [67], have used machine learning algorithms to predict breast cancer diagno-
sis. Addittionally, in the same line, Ahmad et al. [22], Zeng et al. [31] use machine-learning
strategies to predict breast cancer recurrence. Other authors, such as Yerukala Sathipati
and Ho [68], had intended to predict the disease’s different stages and proposed treatment
strategies.

To concentrate on breast cancer, other authors have proposed different techniques
related to mathematical models. For instance, Padmanabhan et al. [69], Jarrett et al. [70] use
mathematical models for the dynamics of breast cancer and immune checkpoint inhibitors.
Even Yang et al. [71] has developed and validated a mathematical model that predicts how
glucose dynamics influence metabolism and, therefore, tumor cell growth. On the other
hand, Szczurek et al. [72] presents theoretical grounds for the metastatic bottleneck with a
simple stochastic model used for breast cancer survival. In addition, Avanzini et al. [73]
developed a mathematical model of tumor evolution and shedding to predict the size at
which it becomes detectable.

In other aspects, when patients do not receive prompt attention, the complexity of
breast cancer increases, and the therapies sometimes cannot work. For this reason and
shown by Chamseddine and Rejniak [74], modeling such complex systems and predicting
how tumors will respond to therapies require mathematical models that can handle various
types of information and combine diverse theoretical methods on multiple temporal and
spatial scales, that is, through hybrid models. In the same way, Altaf [75] designed a
hybrid model based on Pulse-Coupled Neural Networks and Deep Convolutional Neural
Networks for breast cancer diagnosis. In addition, Hosseinpour et al. [76] presented a
hybrid breast cancer risk assessment algorithm. For that, the fuzzy method obtains the
tumor’s effect on breast cancer, and an improved Random Forest Classification predicts an
overall breast cancer risk.

Other sophisticated types of strategies have been considered for breast cancer di-
agnosis, such as nature-inspired meta-heuristic optimization algorithms, presented by
Oladele et al. [77], or a heuristic neural network and meta-heuristic models (see, e.g.,
Alsaeedi et al. [78], Kang et al. [79]). Finally, survival strategies are successfully designed
and studied for breast cancer, where for instance Moncada-Torres et al. [80] and others
compare different techniques for survival analysis, e.g., Cox proportional hazard; machine
learning models for survival analysis; random survival forests; survival support vector
machines; and extreme gradient boosting, which demonstrates a better performance of the
cancer attention patients process.

2.3. Justification of the Chosen Method

In light of the background and the strategies presented in the state-of-the-art, it is
clear that breast cancer prevention processes can be optimized through machine learning
methods and interpretability strategies to support medical decision making and benefit
patients. patients. As a result, the main findings that justify adopting the chosen method
are presented below:
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1. Extensive international evidence demonstrates the importance of including dynamic
and machine-learning methodologies for the prevention and management of patients
with breast cancer. That is why it is urgent in the countries with the highest incidence
to implement these tools that support medical management to help patients.

2. One of the elements rarely addressed in the literature on breast cancer prevention is the
inclusion of interpretable algorithms that facilitate understanding for decision makers.

3. Finally, one of the relevant factors discussed in the literature is the importance of med-
ical opinion when defining methods, criteria, and factors that allow the development
of the oncological strategy since each clinical unit and its committee have its way of
managing its patients.

The conclusions reveal the importance of developing breast cancer prevention systems
that support medical decision making and, in turn, provide each patient with relevant
information for breast cancer prevention in a personalized and early way.

3. Materials and Methods

This section presents the methodology’s main elements for classifying breast cancer
patients using ML + XAI.

3.1. New Strategy to Classify Patients with Breast Cancer

The structure of the patient classification strategy is based on the Intersectoral Standard
Process for the development of Machine Learning applications with the quality assurance
methodology (CRISP-ML(Q)), a method widely used in the health sector and which has
been mentioned in different works, such as Silva-Aravena et al. [17], Kolyshkina and
Simoff [81], Silva-Aravena and Morales [82], Silva-Aravena et al. [83]. Additionally, we
have incorporated an explainability algorithm, XAI, into this strategy to provide better-
quality information that favors clinical decision making. This hybrid method, ML + XAI, is
adapted to improve the management of patients with breast cancer, strongly supported by
the interpretability strategy. The main components of the methodology are presented in
Figure 1.

For the particular case of this study, the methodology presents six stages: (1) the
objective of the study is to determine a model of ML and XAI that allows for predict-
ing the clinical condition of patients and provides an interpretation that supports the
decision-making of the health team; (2) raw data preprocessing from anonymous patients;
(3) evaluate different classification algorithms; (4) create a performance ranking of the mod-
els using the test data; (5) select the best ML model; and finally (6) use the XAI algorithm at
the patient level that contributes to clinical decision support systems.

Figure 1. CRISP-ML (Q) mixed with an XAI algorithm to optimize decision-making for breast cancer
prevention.

3.2. Case Study: Breast Cancer Patients in Indonesia

The data were encoded as part of the processing. We follow a label encoding strategy
in the variables of one class; we use a one-hot encoding strategy in the variables of more
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than one class. As a result of this processing, in the dataset, 0 will indicate the absence of
the feature and 1 its presence.

The case study used the public data of women from Indonesia with and without
breast cancer (see, Nindrea et al. [84]) and was published (https://data.mendeley.com/
datasets/xfcyrffhy7/2, accessed on 1 February 2023). Some risk factors, pointed out by
Listyawardhani et al. [85], Alsolami et al. [86], Solikhah et al. [87], are included in the
study case, such as age at menarche, the first pregnancy, age at menopause, and others. In
addition, a high-fat diet and determinants of body mass index (BMI), parity, breastfeeding,
and other factors for breast cancer in Indonesian women. The registries contain information
on patients with and without breast cancer. The data were collected from the 1st June
to 31 September 2020. Two hundred breast cancer patients and two hundred non-breast
cancer patients in Indonesia provided the online survey. The study would help identify the
potential risk to Indonesian women preventing breast cancer and women in other parts of
the world.

3.3. Extreme Gradient Boosting: XGBoots Algorithm to Predict Breast Cancer

Multiple decision trees are sequentially combined in the ensemble learning technique
known as XGBoost (see, e.g., Ramraj et al. [88], Tian et al. [89]). To represent a dataset
with m features and n labels, let D = (xi, yi)(|D| = n, xi ∈ Rm, yi ∈ Rn) be used. Using
XGBoost’s jth decision tree, a sample (xi, yi) is predicted by

gj(xi) = wq(xi) (1)

where the decision tree’s leaf weights are represented by wq. The total of the predictions
from each decision tree yields the final forecast for XGBoost:

ŷi =
M

∑
j=1

gj(xi) (2)

where M is how many decision trees there are. The objective function in XGBoost is made
up of a loss function l and a regularization term Ω, which work together to combat the
overfitting that decision trees introduce:

obj(θ) =
N

∑
i=1

l(yi, ŷi) +
M

∑
j=1

Ω( fi) (3)

where T is the number of leaves and γ and λ are regularization parameters, and
Ω(f) = γT + λ

2 ∑T
l=1 w2

l . XGBoost iteratively incorporates new decision trees while training.
The tth iteration’s prediction is given as

ŷ(t)i = ŷ(t−1)
i + gt(xi) (4)

In accordance with this, the tth iteration’s objective function is

obj(t) =
N

∑
i=1

l(yi, ŷ(t−1)
i + gt(xi)) + Ω( fi) (5)

XGBoost presents the loss function’s first and second derivatives. The objective
function of the tth iteration can be stated as follows by using Taylor expansion on the
objective function of the second order:

obj(t) '
N

∑
i=1

[l(yi, ŷ(t−1)
i + ∂ŷi(t−1)l(yi, ŷ(t−1)

i ) ft(xi) +
1
2

∂2
ŷi(t−1)l(yi, ŷ(t−1)

i ) f 2
t (xi) + Ω( fi) (6)

https://data.mendeley.com/datasets/xfcyrffhy7/2
https://data.mendeley.com/datasets/xfcyrffhy7/2
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XGBoost can predict the labels of sample data with proportional probabilities. The
likelihood that an anonymous patient has breast cancer or not is output by XGBoost in our
study. If the estimated chance is greater than 50%, this classification is marked as positive
(breast cancer), and if not, it is marked as non-breast cancer.

3.4. Selection Model

This study aims to explain how an algorithm discriminates between patients diagnosed
with breast cancer and healthy ones. We used a dataset of reproductive-related breast
cancer risk factors, a high-fat diet, and body mass index (Nindrea et al. [84]). Through
benchmarking, we evaluate different classification algorithms and select the one with the
best performance to interpret its results. The performance of the algorithms is measured in
terms of accuracy, precision, and recall.

accuracy =
TP + TN

TP + TN + FP + FN
(7)

precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

where TP, FP, FN, and TN correspond to true positives, false positives, false negatives, and
true negatives, respectively. True positives (TP) are the number of cancer patients correctly
identified by the algorithm; false positives (FP) are the number of healthy patients that
the algorithm incorrectly classifies as having cancer; false negatives (FN) are the number
of cancer patients who are incorrectly classified as healthy; and true negatives (TN) are
the number of healthy patients correctly classified. Accuracy in Equation (7) is the ratio
that represents the total number of patients correctly classified over the total number of
patients analyzed. For breast cancer patients, in this study, the precision in Equation (8) is
the ratio that represents the patients with breast cancer correctly identified over the total
that the algorithm indicates have cancer. Recall that Equation (9) corresponds to the ratio
of correctly identified breast cancer patients out of all cancer patients.

The algorithms selected for benchmarking are logistic regression, random forest, XG-
Boost, and support vector machine. We chose these algorithms because they are commonly
used in classification problems and have been used in previous breast cancer screening stud-
ies (see, e.g., Liu [90], Khandezamin et al. [91], Sultana and Jilani [92], Nguyen et al. [93],
Begum et al. [94], Kabiraj et al. [95], Mahesh et al. [96], Liew et al. [97], Kim et al. [98], Wang
et al. [99], Chiu et al. [100], Alshutbi et al. [101]).

The dataset is divided into 75% training and 25% testing. On the training set, the
values of the hyperparameters that maximize accuracy are determined, and these param-
eters are obtained through a random search, this strategy has proven more efficient for
hyperparameter optimization, obtaining better models in less time than a grid search
(Shekhar et al. [102]). Appendix A shows the hyperparameter search space for each algo-
rithm. This study used the classification algorithms’ accuracy as a performance measure
because the dataset is balanced. That is, the number of cancer patients and healthy patients
is similar.

3.5. SHAP Mathematical Method: Strategy to Interpret the XGBoost Model of Breast Cancer

The algorithm that obtains the best ranking is selected to interpret its results. We use
Shapley Additive Explanations because they are widely used for interpreting machine
learning models (Keren Evangeline et al. [103], Zhang et al. [104], Meshoul et al. [105],
Larasati [106], Kim et al. [107]). SHAP is derived from game theory and is useful for
explaining any ML algorithm. To interpret the model, a reference value is used, and the
marginal contribution of each variable to the final result is calculated.
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For our model, and also proposed by Lundberg and Lee [108], the prediction function
is f (x), and F is the set of all input parameters; the SHAP values are obtained as follows:

Φi = ∑
S⊆F\{i}

|S|!(|F| − |S| − 1)!
|F|!

[
fS∪{i}(xS∪{i})− fS(xS)

]
; (10)

where |F| is the number of input parameters of the model, S is a subset of features that
does not include the ith feature, |S| is the cardinality of this subset, y fs() represents the
prediction function of the model.

The experiments were carried out in Python to implement the algorithms and search
for hyperparameters, and the sklearn and XGBoost libraries were obtained. For the inter-
pretation of the results, the SHAP library was obtained.

4. Results

The main results of the methodology used in this research are based on the selection
of algorithms, the explainable model, and the interpretation of the prediction at the pa-
tient level as a clinical decision support model and actions preventing breast cancer from
helping patients.

4.1. Algorithm Selection

We have selected the XGBoost algorithm (see Table 1) since it is the model that rep-
resents the best performance in terms of precision when compared to the other three ML
models. A random search determined the hyperparameters. Table 1 shows the mean values
of accuracy, precision, and recall using cross-validation, with k = 10.

Table 1. Accuracy, precision, and recall when performing cross-validation, k = 10, in training and
test set.

Algorithm Phase Label Precision Recall Accuracy

XGBoots
Train 1 91.7% 75.0% 81.33%0 71.8% 90.3%

Test 1 85.7% 81.4% 81.00%0 75.0% 80.5%

Logistic Regression
Train 1 88.2% 76.5% 81.33%0 75.0% 87.3%

Test 1 82.1% 78.0% 77.00%0 70.5% 75.6%

Random Forest
Train 1 87.5% 75.9% 80.67%0 74.4% 86.6%

Test 1 83.9% 79.7% 79.00%0 72.7% 78.0%

SVM
Train 1 89.6% 76.8% 82.00%0 75.0% 88.6%

Test 1 83.9% 77.0% 77.00%0 68.2% 76.9%

Table 1 shows that XGboost presents the best performance in terms of precision in the
test dataset and does not lose predictive capacity compared to the result obtained in the
train dataset, with the expected result confirming the absence of overfitting. For this reason,
we used XGBoost as the classification algorithm to interpret. Table 2 presents the accuracy,
precision, and recall over the entire set of tests.
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Table 2. Accuracy, precision, and recall obtained from XGBoost with the total test data.

Algorithm Label Precision Recall Accuracy

XGBoots 1 85.4% 79.5% 85.0%0 84.7% 89.3%

Logistic Regression 1 75.0% 81.8% 80.0%0 84.6% 78.6%

Random Forest 1 75.5% 84.1% 81.0%0 86.3% 78.6%

SVM 1 81.0% 77.3% 82.0%0 82.8% 85.7%

The calculated hyperparameters for XGBoost are as follows: (1) reg lambda = 0.1;
(2) reg alpha = 1; (3) n estimators = 400; (4) min child weight = 1; (5) max depth = 3;
(6) learning rate = 0.1; (7) gamma = 0.6; (8) colsample bytree = 0.7.

4.2. Model Explainability

After selecting the XGBoost algorithm, we have considered providing additional
information to physicians and management teams through an interpretability algorithm,
which helps explain how the model classified patients.

Figure 2 represents the extraction of the most significant variables from the XGBoost
model for the available patient data. It is observed that the variables high-fat diet and
breastfeeding described as hfat y Breastfeeding are the most important variables that
allow the algorithm to discriminate between healthy patients and those with breast cancer
in Indonesian women. In Figure 3, the blue color represents the absence of the characteristic
and red its presence; in this, we can observe that the presence of a high-fat diet has a
positive contribution to the prediction of cancer patients, while the absence of a high-fat
diet contributes negatively to the prediction. In this way, the XGBoost model mixed with
the SHAP interpretability algorithm offers more information for the decision making of
health teams.

Figure 2. Visualization of explainability variables provided by the SHAP algorithm.
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Figure 3. Contribution of each variable for the entire dataset.

4.3. Interpretation of the Prediction at the Patient Level

It is crucial to comprehend how a model predicts an outcome. In this case, if the
XGBoost output is greater than or equal to 0.5, the patient will be classified as having breast
cancer, and if the output is less than 0.5, the patient will be classified as having no breast
cancer. To interpret the XGBoost prediction, we obtained the SHAP values from the training
data. For example, we randomly selected two patients the algorithm correctly classified as
not having breast cancer and two correctly classified as having breast cancer.

Figure 4 shows the patients without breast cancer. The blue color decreases the value
of the algorithm’s output, while the red color contributes to increasing the output value.
Figure 4a corresponds to patient 3, who had her first pregnancy after 29, i.e., a SHAP value
of +0.02, corresponding to the marginal contribution over the reference value (0.488). The
positive sign implies that this condition does not satisfy the output value of the algorithm.
However, she does not have a high-fat diet and has breastfed for less than one year; together,
they have a SHAP value of−0.3 (−0.2 and−0.1, respectively), leaving the algorithm output
below the threshold, finally, implying a classification without cancer. Similarly, Figure 4b
shows patient 11, who, having breastfed for over a year, will increase the algorithm’s output
with a SHAP value of +0.02. However, not having a high-fat diet has a greater impact,
and a SHAP value of −0.16, leaving the algorithm output below the threshold, ultimately
implying a cancer-free classification.

(a) Patient 3 (b) Patient 11

Figure 4. Patients without breast cancer and correctly classified by XGBoost.
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Figure 5 shows the patients with breast cancer. Figure 5a corresponds to patient 6,
who, despite having her first pregnancy between the ages of 20 and 29, with a SHAP value
of −0.02, the fact of maintaining a high-fat diet and breastfeeding for longer periods at
one year has SHAP values of +0.07 and +0.02, respectively, implying that the output of
the algorithm is higher than the threshold, classifying the patient with cancer. Similarly,
Figure 5b shows patient 27, who, despite having a pregnancy between 20 and 29 years of
age, has a SHAP value of −0.02, having a high-fat diet, working as a servant civil, and
breastfeeding for periods longer than one year (i.e., SHAP value of +0.15 = +0.07, +0.05
and +0.03, respectively), implying that the output of the algorithm was higher than the
threshold, classifying the patient with breast cancer.

(a) Patient 6 (b) Patient 27

Figure 5. Breast cancer patients correctly classified by XGBoost.

5. Discussion

The main advantage of the strategy proposed in this research is the chance to interpret
the results offered by the combination of ML and XAI algorithms and the knowledge
available to health teams when making decisions on breast cancer prevention. Along the
same line, the proposed strategy helps patients, in a personalized way, to know the relevant
variables and how these variables could increase the risk of suffering from the disease.

The results show a simple method to support the clinical decisions, which allows
each case to know precisely the relevant variables of breast cancer prevention. First, we
compared different classification algorithms with patients with and without breast cancer.
We chose the XGBoost algorithm from this process since it represents better mean accuracy,
using cross-validation with k = 10. We subsequently optimized the parameters of the
XGBoost algorithm and linked it with the SHAP algorithm. The mix of ML + XAI provided
a simple and interpretable method. This method makes it possible to classify new patients
at risk of suffering from breast cancer based on a list of variables. The health team and
decision makers can analyze the category assigned to a patient with or without breast
cancer and understand which rules and the degree of importance determine the result
provided by the prediction model.

The structure of the methodology and other relevant elements could evolve, such
as technology, environmental conditions, and population size. Therefore, it is necessary
to update the methodology since the elements and components of decision making and
management that may be affecting the diagnostic opportunity for the care and treatment of
patients at risk of developing breast cancer may not be so tomorrow.

According to the WHO, 1 in 12 patients develop breast cancer in their lifetime, 8.3%.
This reality is representative of the universe of patients with this health condition. Along
the same lines, the raw data available from Indonesian patients to carry out this study were
400 cases, of which 50% were classified as having breast cancer. The balance of cases with a
confirmed diagnosis of breast cancer (200 cases) undoubtedly affected the performance of
the XGBoost classification model (average accuracy of 0.81 for test data), and we believe
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that in distributions of cases similar to the registries of WHO, the model could offer better
results. The implications of the 15% error in predicting healthy patients should be observed
since, in practice, this means leaving patients who require it without treatment.

As a matter of fact, and if this methodology is reproduced and scaled in other health
services around the world, it is necessary to consider greater availability of anonymous
data from participating patients (i.e., clinical and non-clinical information) for the entire
experimentation process (development of strategies of ML and XAI), the participation of
health teams, and the resources necessary for development.

Some works in the literature show the impact of COVID-19 in patients with breast
cancer (Osareh and Shadgar [21], Ahmad et al. [22], Yue et al. [23]). Unlike these jobs, our
hybrid ML + XAI strategy allows health teams to work in a coordinated and collaborative
manner, favoring decision making and personalized care.

Considering a breast cancer control mechanism and prevention in women is essential.
Although this strategy makes it possible to classify patients, we also suggest an order
or ranking of patients with major risks to be cared for earlier by the clinical team (see,
e.g., Silva-Aravena et al. [109]). For this reason, we suggest that hospitals in Indonesia
do a computerized medical protocol with expert supervision, adding this methodology
as support.

When starting the implementation of this methodology, we recommend that health
services include additional management components to ensure proper classification and
treatment of patients with breast cancer. Despite the results obtained, we suggest that the
method can be analyzed and adapted to the particular requirements and needs of hospitals
where it is implemented.

6. Conclusions

In this research, we follow the standard data management structure in the healthcare
field, CRISP-ML(Q), that combines with the SHAP explainability algorithm to develop a
hybrid ML strategy to classify anonymous breast cancer patients in Indonesia. The method
proposes a novel algorithm that measures some variables, classifies the status of patients,
and decides if patients have breast cancer, helping patients who do not have the disease
with prevention strategies suggested by the clinical team. The methodology is easy to apply
and can help the Indonesian medical team complement their medical decision.

Our work used a universe of 400 anonymous patient cases, 200 of them with breast
cancer in Indonesia. The methodology proposes to use different algorithms for classifying
and selecting the best according to performance indicators, such as accuracy, recall, and
precision. Additionally, the methodology proposed in this work provides new management
elements and an explainable machine learning strategy through the SHAP algorithm that
offers better quality information to health specialists to make decisions based on data about
patients at risk of developing breast cancer.

The resulting model offered by the approach is the ease of interpreting the classification
of patients with and without breast cancer. The interpretability strategy helps patients and
the health team with strategies and suggestions for preventing the disease since it allows
timely knowledge of which variable, in what way, and with what level of quantitative
importance could affect each patient individually. The strategy proposed in this paper
identifies two variables, high-fat diet, and breastfeeding, as the most relevant when
classifying patients in the clinical evaluation process.

In future work, we suggest analyzing the imbalance of cases observed in healthy
patients and those with breast cancer in the real world.

To implement the methodology in this research in hospitals worldwide, we suggest
that health centers have all the relevant information in the decision-making process about
patients with and without breast cancer (i.e., data, relevant variables, and clinical aspects
and administrative management), which allow, on the one hand, classifying with greater
precision and, on the other hand, to validating the management strategy with a higher level
of support and participation of the health teams.
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Appendix A. Hyperparameter Search Space for Each Algorithm

Algorithm Hyperparameter Search Space

XGBoots

n_estimators [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
learning_rate [0.0001, 0.001, 0.01, 0.1, 1]
max_depth range(3, 21, 3)

min_child_weight range(1, 21, 3)
gamma [i/10.0 for i in range(0, 7)]

colsample_bytree [i/10.0 for i in range(3, 10)]
reg_alpha [0.00001, 0.01, 0.1, 1, 10, 40, 80, 100]

reg_lambda [0.00001, 0.01, 0.1, 1, 10, 40, 80, 100]

Logistic Regression

penalty [‘l1’, ‘l2’, ‘elasticnet’]
dual [True, False]
tol [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000]
C [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000]

intercept_scaling [1, 2, 3, 4, 5]
solver [‘newton-cg’, ‘lbfgs’, ‘sag’, ‘saga’]

Random Forest

n_estimators [5, 20, 50, 100]
max_features [‘auto’, ‘sqrt’]
max_depth [int(x) for x in np.linspace(10, 120, num = 12)]

min_samples_split [2, 6, 10]
min_samples_leaf [1, 3, 4]

bootstrap [True, False]

SVM

C [0.1, 1, 10, 100, 1000]
gamma [“scale”, “auto”]
kernel [‘rbf’, ‘poly’, ‘sigmoid’]
degree [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
coef0 [0.1, 0.5, 1, 2, 5, 10]

shrinking [True, False]
probability [True, False]

tol [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000]
cache_size [200, 500, 1000]

class_weight [None, “balanced”]
decision_function_shape [‘ovo’, ‘ovr’]

break_ties [True, False]
decision_function_shape [‘ovo’, ‘ovr’]

break_ties [True, False]

https://data.mendeley.com/datasets/xfcyrffhy7/2
https://data.mendeley.com/datasets/xfcyrffhy7/2
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