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Abstract: In the present work, we study the introduction of a latent interaction index, examining its
impact on the formation and development of complex networks. This index takes into account both
observed and unobserved heterogeneity per node in order to overcome the limitations of traditional
compositional similarity indices, particularly when dealing with large networks comprising numerous
nodes. In this way, it effectively captures specific information about participating nodes while
mitigating estimation problems based on network structures. Furthermore, we develop a Shannon-
type entropy function to characterize the density of networks and establish optimal bounds for this
estimation by leveraging the network topology. Additionally, we demonstrate some asymptotic
properties of pointwise estimation using this function. Through this approach, we analyze the
compositional structural dynamics, providing valuable insights into the complex interactions within
the network. Our proposed method offers a promising tool for studying and understanding the
intricate relationships within complex networks and their implications under parameter specification.
We perform simulations and comparisons with the formation of Erdös–Rényi and Barabási–Alber-
type networks and Erdös–Rényi and Shannon-type entropy. Finally, we apply our models to the
detection of microbial communities.

Keywords: entropy; complex networks; latent interaction index; estimation

1. Introduction

Complex Network Analysis (CNA) is a crucial field that spans various disciplines,
addressing network dynamics [1–3]. In this context, the focus is on unraveling the complex-
ities of network structure, specifically in the dynamics of link formation. The study delves
into three fundamental network attributes: the homophily effect, unobserved heterogeneity,
and persistence measures. Homophily, which denotes the tendency of nodes to connect
with similar nodes, is a well-established phenomenon in real-world social networks [4].
However, many node characteristics influencing linking decisions remain unobservable,
outnumbering observable ones. To address this challenge, a fixed effect approach to ac-
count for unobserved heterogeneity is introduced [5–7], as well as persistence measures
as tools for quantifying time series data dependence [8]. These measures hold significant
implications for various processes, for example, in information diffusion and ecological
networks (see refs. [1,9–11]).

While complex networks offer powerful modeling capabilities, they also present sig-
nificant challenges. One major hurdle is the lack of a comprehensive metric to effectively
measure unobserved heterogeneity, especially in understanding interconnected compo-
nents [12]. This metric should consider interaction abundance and latent nature, aligning
with existing frameworks [13,14]. Furthermore, metrics assessing heterogeneity, both ob-
served and unobserved, are intricately linked to the ways in which nodes are aggregated.
From the above, an acute dilemma arises when unobserved heterogeneity is treated as an
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incidental parameter, independent of node aggregation. In such cases, the parameter vector
dimension grows with network size, leading to non-standard estimation challenges, where
classical results regarding the properties of maximum likelihood estimates (MLEs) no
longer apply [15]. Additionally, certain models (see, for example, refs. [7,16,17]) disregard
interdependencies in network formation. These limitations prompt essential questions: Can
we devise a test for evaluating the link formation interdependence hypothesis? Is it feasible
to extend the model’s scope to incorporate these interdependencies? How can we address
the challenges posed by complex network structures and their inherent uncertainties for a
deeper understanding of link formation dynamics?

In this work, we introduce a novel framework to tackle these complex network anal-
ysis challenges, where our approach (i) incorporates a discrete latent interaction index
that integrates parametric and semiparametric components, shedding light on network
formation dynamics.

The realm of network models is diverse, ranging from classical ones [18–20] to the more
recent advancements [6,7,16]. In the first group of models (I), random networks [18] aim to
probabilistically study graph properties as the number of random connections increases,
reflecting the disordered nature of link arrangements between different nodes. We start
with the hypothesis that the proposed latent interaction index displaces the possibility
of randomness in link formation. We conduct statistical significance tests based on this
hypothesis. Additionally, the Watts–Strogatz model [20] presents a rewiring model that
often exhibits high clustering coefficients in “small” networks. On the other hand, the
Barabási–Albert model [19] relies on two ingredients: growth and preferential attachment.
The idea is that by mimicking the dynamic mechanisms that assemble the network, we
can reproduce the system’s topological properties as observed here. The second group of
models (II) has been limited to studying static nonlinear dyadic models and their asymptotic
properties. Because the number of individual parameters is proportional to the number
of nodes, a problem of incidental parameters results in asymptotic bias [6]. While the
estimator is consistent, asymptotic bias is relevant for inference. We provide a model test
based on the prevalence of transitive triads (i.e., node triples where links are transitive).
Observed heterogeneity has also been incorporated through dyadic models that expand
on this model, just as a probit or logit model generalizes a simple Bernoulli statistical
model, which can be used in directed or undirected settings [21]. It is possible to extend
the Erdös–Rényi model to incorporate other features [5].

Our proposed model seeks to bridge these two groups (I and II), offering a compre-
hensive approach to network analysis by incorporating the strengths of both.

Additionally, (ii) we present an entropy function dynamically accounting for these
components, providing insights into parameters related to persistence and homophily. The
estimates derived from this entropy function provide valuable information to characterize
the parameters related. This framework enhances our comprehension of link formation
within dynamic networks, enabling us to explore the influence of these components on
network formation and evolution [22–24].

To provide a comprehensive view, it is important to note that each entropy metric
used in network analysis offers unique insights into network characteristics and its various
components. However, it is widely acknowledged within the field that not all of these
metrics can be universally applied to all categories of networks. In fact, this wealth of
research is dispersed across numerous disciplines [1,17,22,23,25,26], making it challenging
to identify the available metrics and understand the specific contexts in which they are
applicable. Additionally, this dispersion complicates our ability to determine areas in need
of further development.

These entropy metrics often depend on probability distributions based on various fac-
tors, such as node degrees [27,28], the degree and strength of node neighbors [23,29,30], or
degrees associated with subgraphs of nodes [31]. Path-based metrics, considering sequences
of linked nodes and repetitions of nodes and edges, are also common [32–34]. Moreover,
entropy metrics explore other factors like closeness and information functionals [35,36].
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Some metrics rely on probability distribution, including Bayes posterior probability, al-
though specific calculation methods may not always be clear [37]. Notably, Wang et al. [38]
introduced a combined metric, where the first part is calculated as the sum of closeness
centrality and the clustering coefficient.

Ecological research has a long-standing tradition of studying co-occurrence and co-
abundance patterns. These patterns often signify non-random species co-occurrence, indi-
cating that interactions play a significant role in community structure—either by fostering
aggregation or promoting avoidance/exclusion—thus influencing the overall community
dynamics. Macro-ecological interaction networks illustrate that such patterns bolster com-
munity robustness and functionality, crucial for comprehending community dynamics
and productivity [25,39]. Microorganisms engage in diverse relationships, encompassing
both antagonistic and cooperative interactions. With the advancements in sequencing
technologies, we now have access to substantial datasets for analysis. This allows for
the construction of co-occurrence networks using correlation coefficients or similar met-
rics. However, interpreting these networks, especially in microbial surveys with poorly
understood organism behaviors, presents significant challenges [11,17,40].

The complexity of microbial communities makes it challenging to validate community-
wide interactions due to the multitude of species and limited experimental approaches.
Consequently, modeling microbial populations using simplified growth and interaction
rules offers an alternative approach to simulate the dynamics of these intricate multispecies
communities. In this study, we consider the model proposal as an application for identifying
microbial networks. Concretely, we apply our dynamic network formation model on an 18S
rRNA gene amplicon dataset. The original dataset comprises 19 samples, and we observe a
total of 3831 OTU (Operative Taxonomic Unity) entries. These observations are obtained
through Lagrangian sampling as part of a study conducted by Hu et al. [40].

This work starts by providing an introduction to our notations, delineating the symbols
and conventions used throughout this study. The organization of this paper is as follows:
In Section 2, we present the proposed model; then, in Section 3, we introduce the entropy
function. In Section 4, simulation results are presented, and in Section 5 we apply the model
focused on the microbial network identification. Section 6 provides the conclusions and
discussions, while all proofs of the theorems and elimination of fixed effects are present
in Appendix A.

Notation 1. Network G = (V, E) is an ordered pair of sets V and E, where V is a set finite
nonempty of elements named nodes, and the set E is composed of two-element subsets {ij} of V
named edges. If i and j are connected, {ij} constitutes a dyad, and j is a neighbor of i. Along the

work, we use notation ∏
i<j

to indicate
N

∏
i=1

N

∏
j=i+1

, and similarly ∑
i<j

to indicate
N−1

∑
i=1

N

∑
j=i+1

.

2. Structural Model

We consider a dynamic group interaction scenario consisting of a large population of
connected nodes. We let i = 1, . . . , N is the index of a random sample of size N from this
population at time t = 1, . . . , T. Each node i has a profile defined as (X>i,t, Ai)

>, where Xi,t is
an aggregated vector of the observed time-varying characteristics, Ai contains unobserved
information assuming the t-invariant. We let Supp(Xi,t) be a compact subset of Rdim(Xi,t),
and Ai is distributed compactly and continuously on the same support, conditional on
Xi,t = x, i.e., for all x ∈ Supp(Xi,t), Supp(Ai|Xi,t = x) = Supp(Ai) is a compact subset
of R.

Linking decisions are a binary choice that depends solely on the characteristics of
the two nodes connected by the link. We observe relationships between nodes through
the indicator variable Cij,t ∼ Bernoulli(pij,t), where Cij,t = 1 if node j interacts (success)
with node i at time t and Cij,t = 0 (failure) otherwise. Parameter pij,t can be interpreted
as the detection rate of the interaction between nodes i, j. Connections are undirected
(i.e., Cij,t = Cji,t), and self-ties are ruled out (i.e., Cii,t = 0 for all t). For each t = 1, . . . , T,
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there is a corresponding N × N socio-matrix C = (Cij,t)i 6=j that captures the interaction
dynamics between nodes i and j across all time steps.

We parameterize the latent interaction structure according to the probability of each
link Cij,t:

Cij,t = 1
{ q

∑
p=1

α0
pCij,t−p + β0X>ij,t + Dij,t + Aij − εij,t > 0

}
, (1)

where 1(·) denotes the indicator function. The q-dimensional vector α0 = (α0
1, · · · , α0

q)
>

with ‖α‖ < 1 and 1 ≤ q ≤ t − 1 captures the autocorrelation or cumulative nonlinear
persistence of the time series [8]. Variable Xij,t : Supp(Xi,t)× Supp(Xj,t) → Rdim(β) is a
known transformation of (X>i,t, X>j,t)

>. This function is symmetric, so that Xij,t = Xji,t. For
example, if Xi,t and Xjt are location coordinates, Xij,t is equal to the “distance” between
i and j. This choice was implemented under the consideration that nodes only form
connections if they are close enough [7,16,21]. Vector β0 is an unknown model parameter
that parameterizes homophily preferences. The parameter vector is θ0 = ((α0)>, (β0)>)> ∈

int(Θ), with Θ being a compact subset of Rq+dim(β). Variable Dij,t = ∑
t′≤t

N

∑
k=1

Cik,t′Cjk,t′

denotes the memory effect of connections that node i and j have had in common up to time
t. Variable Aij is a component that varies with unobserved attributes by node pairs as in
Graham’s model [7], and εij,t represent an idiosyncratic component that is assumed to be
independent and identically distributed over time. Moreover, this component is assumed
to be independent across pairs, although not necessarily identically distributed; it is

F(ε12,1, . . . , ε12,T , . . . , ε(N−1)N,1, . . . , ε(N−1)N,T) = ∏
i<j

T

∏
t=1

Fεij,t . (2)

It is important to note that Equation (1) captures in a parsimonious way three forces that
researchers consider important for bond formation [41]. First, linkages are state dependent;
equally, the linkage returns for i and j are higher in the current period if they were also
connected in previous periods. Second, there are returns to “triadic closure”, profit is higher
if transitive aspects are considered in the interaction between nodes. In addition, Rule (1) is
more general instead of taking Dij,t = 0 and α0

p = 0 for all p = 1, . . . , q, which would imply
that only direct entailments are important, not autocorrelation and particular incentives
for interaction.

The degree of a node is defined as the number of links it possesses, which can be rep-
resented as the sum of connections it has with other nodes, and denoted as Ci+,t = ∑

i 6=j
Cij,t.

The network’s degree sequence is obtained by summing the rows (or columns) of the
adjacency matrix, resulting in an N × 1 vector C+ = (C1+,t, . . . , CN+,t)

>.
We denote

zij,t(θ, Aij) = exp

(
q

∑
p=1

αpCij,t−p + βX>ij,t + Dij,t + Aij

)
.

For parameter values θ ∈ int(Θ) and A = ((Ai)i=1,...,N , (Aj)j=1,...,N)
> ∈ Supp(A), we

define the link probability pij,t(θ, Aij) =
zij,t(θ, Aij)

1 + zij,t(θ, Aij)
.

With the information presented above, we are now able to outline the principal
assumptions that significantly influence our work:
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Assumption 1. Equations (1) and (2) specify a dynamic model of node interactions. The condi-
tional likelihood of link Cij,t = cij,t is given by

Pr(Cij,t = cij,t|X, D, A0) = ∏
i<j

T

∏
t=1

z
cij,t
ij,t (θ

0, Aij0)

1 + zij,t(θ0, Aij0)
, (3)

Here, Assumption 1 implies that the idiosyncratic component of link surplus, εij,t, is a
standard logistic random variable that is independently and identically distributed across
pairs of nodes. The assumption that links are formed independently of each other based on
agent attributes may hold in some situations but not in others. Specifically, Equation (1) and
Assumption 1 are suitable for scenarios where link formation is predominantly bilateral.
This is particularly relevant in certain types of friendship and trade networks, as well as in
models of specific types of conflicts between nation-states [42,43]. In these contexts, the
incorporation of unobserved node characteristics into the link formation model represents
a significant and useful generalization relative to many commonly used models.

The objective pursued here is to study the identification and estimation problems
posed by the shape according to Equation (1) and Assumption 1. This set encompasses
a useful class of empirical examples and represents a natural starting point for a formal
statistical analysis. In this context, early methodological work focused on introducing
unobserved correlated heterogeneity into static choice models [44,45]. Subsequent work
incorporated a chance for stated dependence in choice [46].

The estimated value of the parameters, denoted by

θ̂ = (α̂>, β̂>)>, (4)

âN = (Â1, . . . , ÂN)
>, (5)

are the solution to the population conditional maximum likelihood problem

max
(θ,aN)∈Rdim(θ)+N

Ea[LNT(θ, aN)],

LNT(θ, aN) := (NT)−
1
2

{
∑
i<j

T

∑
t=1

Cij,t log(pij,t(θ, Aij)) +
(
1− Cij,t

)
log
(
1− pij,t(θ, Aij)

)}
, (6)

for every N, T. Here, Ea denotes the expectation with respect to the distribution of the data
conditional on the unobserved effects.

Assumption 2.

(i) Asymptotics: We consider limits of sequences where N/T approaches a constant value c as
both N and T rise to infinity, where c is a finite number greater than zero.

(ii) Sampling: Conditional on aN = (A1, . . . , AN)
>,
{
(Cij,t, Xij,t) : 1 ≤ i, j ≤ N, 1 ≤ t ≤ T

}
is independent across the dyad, and for Yij,t = (Cij,t, Xij,t),A is the σ-field generated by (Yij,t,
Yij,t−1, . . .)>, and B is the σ-field generated by (Yij,t, Yij,t+1,...)

>.
(iii) Compact support: The support of Xij,t is a compact subset of Rdim(β).
(iv) Concavity: For all N, T, (θ, aN) 7→ LNT(θ, aN) is strictly concave over Rdim θ+N .

Just for completeness, Assumption 2 (i) defines the large-T asymptotic framework and
is the same as in Hahn and Kuersteiner [47]. The relative rate exactly balances the order of
the bias and variance producing a non-degenerate asymptotic distribution. Assumption 2
(ii) imposes neither identical distribution nor stationarity over the time series dimension,
conditional on the unobserved effects, unlike most of the large-T panel literature [47].
Additionally, it is used to bound covariances and moments in the application of the Laws
of Large Numbers (LLN), as we see below, it could be replaced by other conditions that
guarantee the applicability of these results. Assumption 2 (iii) is standard in the context of
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nonlinear estimation problems [48]. It implies that the observed component of link surplus,
∑

q
p=1 αpcij,t−p + βx>ij,t + dij,t, has bounded support. This simplifies the proofs of the main

theorems, especially those of the ML estimator. Furthermore, (iv) imposes smoothness and
moment conditions in the log-likelihood function and its derivatives. These conditions
guarantee that the higher-order stochastic expansions of the fixed effect estimator that we
use to characterize the asymptotic bias are well-defined, and the remaining terms of these
expansions are bounded. In addition, this guarantees that all the elements of Xij,t have
cross-sectional and time series variation. In addition, it also guarantees that θ̂ is the unique
solution to the population problem (given by Equation (6)), that is, all the parameters are
point identified. The existence and uniqueness of the solution to the population problem
are guaranteed by our Assumptions 2, including the concavity of the objective function in
all parameters.

Together with the above, and denoting pij,t = pij,t(θ
0, a0

N), through to Parts (iii)
and (iv) from Assumption 2 in combination with Supp(Ai) being a compact subset of
R, our findings imply that pij,t(θ, aN) ∈ (κ, 1− κ) for some 0 < κ < 1 and for all θ and
aN ∈ Supp(A). An implication of this fact is that (Cij,t − pij,t) log(pij,t(θ, aN)) is a bounded
random variable. A more involved argument shows that it is possible to estimate the
difference between Cij,t and pij,t with uniform accuracy.

With the aforementioned assumptions in place, we can now elucidate the primary
theorems that are providential through the work:

Theorem 1. Under Assumptions 1 and 2,

sup
1≤i,j≤N

sup
1≤t≤T

∣∣∣∣∣ 1
(N − 1)T ∑

i<j

T

∑
t=1

(
Cij,t − pij,t

)∣∣∣∣∣ < √ln(NT) (7)

with probability 1−O
(
(NT)−2).

Theorem 1 suggests that as more data are collected (increasing N) and a broader time
horizon is considered (increasing T), the difference between latent variables and observed
probabilities becomes relatively small and tends to be more bounded. This interpretation
may be relevant for assessing the accuracy or validity of a latent model in relation to real
observations within a network. The term ln(NT) in the upper bound can be interpreted as
a measure of the uncertainty associated with the difference between latent variables and
observations. As N and T grow, uncertainty decreases.

The following theorem is related to a generalized form of the Law of Large Numbers
(LLN) adapted to the context of complex networks.

Theorem 2. Under Assumptions 1 and 2, we assume that

E
(

sup
θ∈Θ

∣∣∣ log
( zij,t(θ, aN)

1 + zij,t(θ, aN)

)∣∣∣)

is finite for all t and F = {cij,t′ : t′ < t} is a filtration with respect to A; then,

Ea

(
∑
i<j

lθ,aN
ij,t

∣∣∣F) Pr−→
(

N
2

)−1

∑
i<j

E
[

log
( zij,t(θ

0, a0
N)

1 + zij,t(θ0, a0
N)

)]

uniformly in θ ∈ Θ.

In the LLN, the average of random variables is expected to converge to the expected
value as the sample size grows. In this case, the sum of certain probability functions lθ,aN

ij,t for
all dyads in the network converges in probability towards a sum of probabilities associated
with the dyads. Convergence in probability implies that as the network size (or the number
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of dyads) grows, the conditional expectation of the discrete choice probabilities approaches
the expected value of those probabilities for all dyads. This can have significant implications
in the theory of complex networks. For example, the stability of emergent patterns: if the
result holds, it implies that as the network grows, emergent patterns in discrete choices
may become more stable and predictable, providing a deeper understanding of collective
behavior in the network [49].

3. Exploring the Entropy

Combining Assumption 1 and conditional on Xij,t, Dij,t and Aij, we write

lθ,aN
ij,t = cij,t log(zij,t(θ, aN))− log

(
1 + zij,t(θ, aN)

)
(8)

for the log-likelihood contribution of link {ij}. Since entropy characterizes the logarithm
of the number of different nodes that can be separated in the stochastic dynamics of the
network [37,50], we use Equation (8) to provide a new node interaction detection rate.
We note that by the asymptotic equipartition property (AEP) (see, e.g., ref. [51]), we

have − 1
TN2 lθ,aN

ij,t converging in probability to the entropy of C, denoted as H(C), where
C represents the socio-matrix of the network. Formally,

H(C) = −∑
i<j

T

∑
t=1

lθ,aN
ij,t log

(
lθ,aN
ij,t

)
= ∑

i<j

T

∑
t=1

+∞

∑
k=1

lθ,aN
ij,t

(
1− lθ,aN

ij,t

)k

k
, (9)

where the variable k ranges from 1 to +∞, indicating that all possible configurations of con-
nections that do not exist between nodes i and j are considered. Expression[

lθ,aN
ij,t (1− lθ,aN

ij,t )k
]
/k represents the probability of there not being a connection between

nodes i and j at time step t. Therefore, Equation (9) combines the influences of both existing
and non-existing connections at each time step to compute the entropy of the dynamic
network. For the sake of completeness, Figure 1 shows the behavior of the entropy H(C)
for values of N nodes. It is crucial to note that Equation (9) comprehensively encompasses
the charging capability of the logistics distribution—a facet that some propositions tend to
disregard [52]. For the sake of completeness, Figure 1 shows the behavior of the entropy
H(C) for values of N nodes.

The following theorems establish consistency of θ̂ (Equation (4)):

Theorem 3. Under Assumptions 1 and 2, we have that∥∥θ̂ − θ0∥∥ < O
(
(NT)−1/2

)
. (10)

Theorem 2 provides a foundation for drawing inferences about the parameter vector
encompassing homophily and nonlinear persistence. However, attaining asymptotic nor-
mality, for reasons we elaborate on, cannot be guaranteed. The consistency test for models
with only individual effects is based on partitioning the log-likelihood into the sum of indi-
vidual log-likelihoods that depend on a fixed number of parameters, the model parameter,
and the corresponding individual effect. The individual log-likelihood maximizers are
then consistent estimators of all parameters as they become large according to standard
arguments. This approach does not work on network structure because there is no partition
of the data that are only affected by a fixed number of parameters and whose size grows
with sample size [6].

To achieve asymptotic normality over the observed, we first need to control for the
unobserved and second to establish consistency in the estimated entropy function, which
depends on both components.
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Figure 1. Entropy function H(C) for values of N nodes. Here, β0 is a scalar equal to 0.5 and α0 is a
random vector of length 10 with a norm of less than 1.

We assess node performance and select a group of exogenous nodes to serve as a
“testing ground”. To achieve this, we examine the conditional expectation of Cik,t and Cjk,t,
conditioning on the observable characteristics of node k, and the characteristics of nodes i
and j based on Xij,t and Aij. We denote Hij,t(xk,t, aij) as the expected value of (Cik,t − Cjk,t
|Xkt = xkt, Aij = aij, Xij,t = xij) and δij,t(Xk) = Hij,t(Xk,t, Aij). According to Parzen’s
estimation [53] and Rosenblatt’s remarks [54], we define dyadic extension for monadic
data by

δ̂ij(x) :=
1

NT

N

∑
l=1

T

∑
t=1

(Cil,t − Cjl,t)K̃(x− Xl,t); K̃(x− Xl,t) :=
K
(

x− Xl,t

h(N)

)
∑N

l=1 K
(

x− Xl,t

h(N)

) . (11)

Here, K(x) is a density function satisfying the following conditions: (i) K(x) < ∞ for all x,
(ii) symmetric around zero (K(−x) = K(x)), (iii) K(x) = 0 if |x| > x, and integrates to one
(
∫

K(x)dx = 1). Bandwidth h(N) is assumed to be a positive, deterministic sequence that
tends to zero as N → ∞.

Lemma 1. Under Assumptions 1 and 2, we have supi,j |δ̂ij(x)− δij(x)| = Op((NT)−1).

There are at least two approaches to the estimation of unobserved heterogeneity (fixed
effects). The first lies in a computational perspective [6,55]. For these purposes, the solution
of the (6) program for θ is the same as in the solution of the program that imposes ι>N aN = 0
with ιN , a vector of N-ones, directly as a constraint on the optimization, which is invariant
to normalization. This constrained program has good computational properties because its
objective function is concave and smooth in all the parameters. The second alternative arises
from Parzen’s estimations of a density function [53]. This alternative is also efficient for the
estimation of unobserved heterogeneity. The problem of estimating a probability density
function over the unobserved is sometimes similar to the problem of estimating maximum
likelihood parameters. However, in a network setting, it is more similar to estimating the
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spectral density function of a stationary process [53]. Focusing on the second alternative,
the following argument shows that it is possible to estimate unobserved heterogeneity with
a given probability of occurrence. We consider ιdim θ as a vector consisting of dim(θ). We
let L : R→ R be a Lipschitz function, differentiable, a symmetric kernel function, and θ̂ as
in Theorem 2.

Theorem 4. Under Lemma 1, we define

Âl(θ) =
1
N
·

∑i<j L

(
δ̂ij(xl)

σN

)
Xil,tX>jl,tθι>dim(θ)

∑i<j L

(
δ̂ij(xl)

σN

)

for all l 6= i, j with σN being bandwidth. Then, |Âl(θ̂) − Al(θ)| = Op(max{(NTσN)
−1,

σN(NT)−1}).

Chatterjee, Diaconis, and Sly [56] demonstrated the uniform consistency of estimator
Âl(θ) in the model that does not incorporate dyad-level covariates. The key to this theorem
is the following: In sparse network sequences, we effectively witness N− 1 linking decisions
made by each node, which means that we observe whether node i links to every other
node j. This unique feature of the problem allows for consistent estimation of Âl(θ) for
each node. The argument becomes tedious because of the interdependence of the linking
decisions in the sequences of nodes i and j. However, this dependence is weak, only arising
via the presence of Cij,t in both link sequences. Establishing asymptotic normality of θ̂ is
also involved. This is because the sampling properties of θ̂ are influenced by the estimation
error in Âl(θ). This influence generates a bias in the limit distribution of θ̂. This bias is
similar to that which arises in large N, large-T joint fixed effects estimation of non-linear
panel data models [47].

To state the form of the limit distribution, we let Ĥ(C) and H0(C) be the entropy
computed over the parameter vector θ̂ and θ0, respectively. Our objective is to estimate
quantity H(C) within the family of networks C that contains nodes i and j. Our estimator
is expected to provide a reliable estimate of H(C). Here, we state the following result:

Theorem 5. Under Assumptions 1 and 2,

sup
C∈C

∣∣∣Ĥ(C)− H0(C)
∣∣∣ < 1

NT

√
log NT (12)

with probability 1−O
(
(NT)−1).

This inequality demonstrates that our estimator Ĥ(C) enjoys uniform consistency
within class C. In simpler terms, it implies that, as our sample size N and time period T
increase, the maximum absolute difference between our estimator and the true value H(C)

across all sets C ∈ C becomes small. The probability that the bound
1

NT
√

log NT holds is

stated to be 1−O((NT)−1), meaning that it holds with high probability as the size of the
network and the number of time steps grow large. This result provides an upper bound
on the discrepancy between the estimated and true entropy, ensuring the reliability of the
estimation in the context of the class of networks C.

Now, via definition

J0(θ) = lim
N,T→∞

−
((

N
2

)
T
)−1 ∂2E

(
LNT(θ

0, â(θ0))
)

∂θ∂θ>
, (13)

we are in a position to show
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Theorem 6. Under Assumptions 1 and 2,
√

NT(θ̂ − θ0)−J −1
0 (θ)

J0(θ)1/2
D−→ N

(
0, Idim(θ)

)
. (14)

To converge to a normal distribution, the difference between estimator θ̂ and true
value θ0 has to be bias-corrected and rated proportionally to the number of nodes N and
time T. In the dense network setting considered here, θ0 is estimated based on the observed
linking decisions about N(N − 1) potential links. Therefore, the rate of convergence

√
NT

is the conventional parametric rate corresponding to the sample size [5,7].
We finalize this section showing some functional dimensions of the entropy function,

given by

Theorem 7. Under Assumptions 1 and 2, we have that:

(i)

H(C) ≤
ρkl,N

K
log
(

K(N − 2)
ρkl,N

)
−

N−1

∑
i=1

lθ,aN
i(i+1),t

K
log

 lθ,aN
i(i+1),t

K

− N−1

∑
i=1

liN,t

K
log

(
lθ,aN
iN,t

K

)
,

where

ρkl,N =
N−1

∑
k=1

N

∑
l=k+1

lkl,t −
N−1

∑
k=1

(
lθ,aN
k(k+1),t + lθ,aN

kN,t

)

and K = ∑
i<j

T

∑
t=1

log

(
zij,t(θ, aN)

(1 + zij,t(θ, aN))2

)
.

(ii) If F = {cij,t′ : t′ < t} and F ′ = {c′ij,t′ : t′ < t} are two filtrations with respect to A, then

H(C) ≥ −∑
i<j

$ij,F log($ij,F ′)−
1

ln(2) ∑
i<j

($ij,F )
2 − $ij,F$ij,F ′

$ij,F ′
, (15)

where $ij,F =
lθ,aN
ij,F

∑i<j lθ,aN
ij,F

and $ij,F ′ =
lθ,aN
ij,F ′

∑j<i lθ,aN
ij,F ′

.

Theorem 7 states that the entropy H(C) of the dynamic network C is bounded by the
mutual information between successive states of the filtrations F and F ′. This means that
as the states of the network become more predictable and related to each other, the entropy
decreases, implying greater structure and order in the network. Conversely, if the states are
more independent and random, the entropy increases, reflecting a more chaotic and less
predictable structure in the network.

4. Benchmark and Simulations

In this section, we studied the finite sample performance of procedures in Monte Carlo
simulations, where the programming language used for these simulations is Matlab. We
compared the development and robustness of our network formation model using the
Erdös–Rényi [18] and Barabási–Albert [19]-type networks. The Barabási–Albert network
was generated with a connection probability of 0.5 and a new number of links in each
period equal to five. These comparisons were made with the metrics of degree distribution,
clustering coefficient, and entropy value. The experiment was based on the latent index
formation rule with specification

Cij,t = 1

{
10

∑
p=1

αpCij,t−p + XitX>jt β + Aij − εij,t ≥ 0

}
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Here, β0 = 0.5, α0 is a random vector with a norm of less than one and Xi ∈ {−1, 1},
i = 1, . . . , N being independent and identically distributed random variables simulated by
Xi = 1− 2 · 1{i is even}, with size networks of 100, 150, 200, 250 and 500. For larger sample
sizes, the behavior of the entropy function is, on average, similar. With this specification,
nodes with an even index prefer links to nodes with an even index over links to nodes with
an odd index, and vice versa for nodes with an odd index. Through 1000 repetitions of the
experiment, we show the reproducibility and dynamics of the constructed networks. A 15-

step time experiment was proposed. In addition, Aij = |Ai− Aj|with Ai =
( N − i

N − 1

)
log N

for all i = 1, . . . , N. The descriptive characteristics of the network formation are shown
in Table 1. Based on Table 1, we can perform a comparative analysis between the three
generated networks.

Table 1. Network statistics.

Network Size
Network

Mean
Degree

Standard
Deviation

Cluster
Coeficient

Standard
Deviation
(Cluster

Coefficient)

Simulate 100 0.50 3.01 0.91 0.15
Erdös–Rényi 100 0.10 1.40 0.11 0.01
Barabási–Albert 100 0.28 0.25 1.01 0.24

Simulate 150 0.33 2.19 0.97 0.18
Erdös–Rényi 150 0.05 1.78 0.11 0.02
Barabási–Albert 150 0.10 0.15 1.02 0.25

Simulate 200 0.27 1.73 0.92 0.19
Erdös–Rényi 200 0.06 0.91 0.08 0.01
Barabási–Albert 200 0.12 0.08 0.56 0.14

Simulate 250 0.22 1.44 0.94 0.16
Erdös–Rényi 250 0.04 0.44 0.08 0.05
Barabási–Albert 250 0.20 0.06 0.01 0.16

Simulate 500 0.20 0.82 0.98 0.14
Erdös–Rényi 500 0.09 0.44 0.09 0.008
Barabási–Albert 500 0.13 0.01 0.01 0.13

1. Mean Degree: The mean degree represents the average number of connections that
nodes have in the network. In the simulated network, the mean degree decreases as the
network size increases, suggesting that nodes tend to be less connected to each other.
This could be influenced by the parameters of the network generation model, such as
α, β, and p, which affect the probability of forming new connections at each time step.
On the other hand, the Erdös–Rényi and Barabási–Albert networks maintain their
mean degree relatively constant, indicating that their connection generation process is
not strongly influenced by network size.

2. Standard Deviation of Degree: The standard deviation of the degree measures the
variability in the number of connections that nodes have in the network. In the
simulated network, the standard deviation of the degree tends to decrease as the size
of the network increases, implying that node degrees become more homogeneous.
This could be a desirable feature in some contexts, as it indicates that the simulated
network tends to have a more uniform degree distribution, which is associated with
greater robustness and stability in its structure.

3. Clustering Coefficient: The clustering coefficient measures the proportion of connec-
tions that exist between the neighbors of a given node. In the simulated network and
Erdöss–Rényi networks, the clustering coefficient tends to decrease as the size of the
network increases. This suggests that nodes tend to be less interconnected compared
to smaller networks. On the other hand, in the Barabási–Albert network, the clustering



Entropy 2023, 25, 1535 12 of 28

coefficient remains at one, indicating that neighboring nodes are highly connected.
This result is characteristic of Barabási–Albert scale-free networks, where new nodes
tend to preferentially connect to existing nodes with higher degrees, resulting in high
clustering among the neighbors of each node.

Regarding the convergence order, it is observed that the simulated network exhibits
an intermediate behavior between Erdös–Rényi and Barabási–Albert networks in terms of
mean degree and clustering coefficient. While Erdös–Rényi networks are more homoge-
neous and less clustered, and Barabási–Albert networks are more heterogeneous and highly
clustered, the simulated network shows intermediate characteristics, making it suitable for
representing systems that contain elements of both tendencies.

Concerning entropy, we validated the development of entropy H(C) across the same
number of network sizes over three time periods. We compared the results with Erdös-
Rényi entropy [57] and Shannon entropy [58]. Table 2 summarizes the results obtained from
1000 simulations. The analysis shows that entropy H(C) performs consistently well across
various network sizes and time periods. It demonstrates competitive values compared to
Shannon entropy and outperforms Erdös–Renyi entropy significantly. The results indicate
that H(C) is a reliable and effective measure to capture the information flow in network
dynamics. The lower values obtained by H(C) compared to Shannon entropy suggest that
it provides a more informative representation of the network’s complexity. Furthermore,
the increasing trend of H(C) with network size indicates that it effectively captures the
growing complexity of larger networks, indicating that larger networks tend to have
more structure and order. Overall, these findings support the usefulness of H(C) as an
entropy measure for analyzing network dynamics and information flow. Higher Shannon
entropy values indicate greater diversity or complexity within the networks. In this context,
Shannon entropy decreases as the size of the network increases, which implies greater
self-organization and less uncertainty within larger networks.

Table 2. Network entropy values.

Network
Size Network

100 200 250 500

H(C) 4.27 4.36 4.05 3.33
Shannon Entropy 10.11 11.50 11.94 14.34
Erdös-Rényi Entropy 401.3 523.1 559.4 689.9

5. Empirical Application

In this section, we apply our dynamic network formation model (Equation (1)) to
the 18S rRNA gene amplicon dataset from a study by Hu et al. [40]. This application has
focused the microbial network identification. Seawater samples were collected from a
depth of 15 m every 4 h following a Lagrangian sampling schematic in an anticyclonic
eddy in the North Pacific Subtropical Gyre, as a part of the Simons Collaboration on Ocean
Processes and Ecology (SCOPE, http://scope.soest.hawaii.edu/) cruise efforts in July 2015.
Some species with taxonomical classification of RNA OTUs are shown in Table 3.

Table 3. Taxonomic identities.

Taxonomic Group Taxonomic Detail of RNA OTUs

Alveolates Ciliates Phyllopharyngea, Spirotrichea, Litostomatea, Prostomatea,
Oligohymenophorea, and Colpodea

Dinoflagellates

Symbiodinium, Gyrodinium, Protoperidinium, Prorocentrum,
Dinophysis, Gymnodinium, Heterocapsa, Apicoporus, Suessiales,
Azadinium, Blastodinium, Chytriodinium, Peridinium,
Amphisolenia, Phalacroma, Amphidinium, and unclassified
Dinophyceae.

Syndiniales Dino-Group-I, Dino-Group-II, Dino-Group-III, and Dino-Group-V

http://scope.soest.hawaii.edu/
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Table 3. Cont.

Taxonomic Group Taxonomic Detail of RNA OTUs

Archaeplastids Chlorophytes Chlorodendrophyceae, Pyramimonadales, and Prasino-Clade-VII
Other Heliconia.

Rhizaria Acantharia Hexaconus, Chaunacanthida, Acantharea, Amphilonche,
Staurolithium, Acanthocolla, and Heteracon.

Cercozoa Protaspa.
Opisthokont Fungi Other-unclassified

Metazoa Arthropoda, Mollusca, Annelida, and Urochordata.

5.1. Analytical Processes

We examined the influence of species richness, specifically focusing on the relative
rather than absolute frequency of OTUs. This simplicity forms the primary homophilic
structure governing interactions among species taxa in this microbial context, where species
engage based on their relative abundances. Subsequently, we applied the Community
Louvain algorithm to identify the microbial communities participating in various interac-
tions during each sampling period. To validate the algorithm’s findings, we conducted
null modularity calculations with 1000 replicates to assess the statistical significance and
distinctiveness of the identified communities within the networks. Additionally, we con-
sidered community uniformity and similarity across the sampling periods. To confirm
sample dissimilarity, we conducted multiple ANOVA tests and employed the Jaccard test.
Our analysis encompassed sensitivity, interaction intensity, and the effect of parameters
observable and non-observable on microbial diversity. Computational cost allowed us
evaluation of six samples. Samples were collected using 10 L Niskin bottles mounted
on a CTD rosette at 6 a.m., 10 a.m., 2 p.m., 6 p.m., 10 p.m., and 2 a.m. Corresponding
temperature, salinity, dissolved oxygen, and chlorophyll a data were derived from the
same CTD casts. The input data are presented in the form of sequential count tables, where
each column represents a sample, and each row represents a taxonomic designation (OTU
or transcription ID) with sequence count or read coverage abundance per taxon. Global
singletons (where a single OTU appears with a frequency of 1 in the entire dataset sequence)
are removed. Out of a total of 3831 Taxa observed, 1779 are eliminated.

5.2. Results

Incorporating the details outlined above, along with the dynamic network formation
model (1), we present the following results.

5.2.1. Calculating Sensitivity and Specificity, Effect of Interaction Intensity

The interaction network and co-occurrence network were compared to each other
to determine the sensitivity and specificity of the constructed co-occurrence network in
detecting direct (first-order) interactions [25]. For this calculation, a true positive (TP) was
indicated by the presence of an edge in the co-occurrence network that had the same sign as
in the interaction network (when using association metrics with sign). A false positive (FP)
represented an edge in the co-occurrence network that was not present in the interaction
network. A false negative (FN) denoted an edge in the interaction network that was absent
in the co-occurrence network. A true negative (TN) was the absence of an edge in both
the interaction and co-occurrence networks. Sensitivity was defined as TP/(TP + FN), and
specificity was defined as TN/(TN + FP). In cases where two species interacted with each
other with different signs, the interaction with the larger absolute value was considered to
be the sign of the net interaction. In addition, we calculated each precision as TP/(TP + FP),
and F1 score as 2× (precision× sensibility)/(precision + sensibility).

The similarity of species had a large effect on network sensitivity (see Table 4). Though
specificity remained high at similarities ranging from 89% to 90%, the sensitivity increased
through this range within creasing similarity. Samples with relatively high similarity in
species membership were therefore useful for constructing sensitive networks. Many real
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microbial communities have a lower percentage of shared taxa, but this is largely due
to under sampling of rare species [59]. The F1-score, which reflects the balance between
precision and recall in measuring species interaction or co-occurrence, consistently indicates
strong performance throughout the day. An F1-score of 0.637 indicates a good balance
between precision and recall for species interaction or co-occurrence at 6 a.m. This means
that the model or method used to measure species interaction performs well in identifying
both positive (species interactions) and negative (absence of interactions) cases at this time.
At other time points, including 10 a.m., 2 p.m., 6 p.m., 10 p.m., and 2 a.m., the F1-scores
range from 0.635 to 0.644. These values suggest that the employed method effectively
identifies species interactions, with a particularly noteworthy performance during the
nighttime hours at 2 a.m. Overall, the F1-score results highlight the method’s robustness in
assessing species interactions across different times of the day.

Table 4. Metric values of the sample of the network.

Network Time
Metric

Entropy Transitivity Mean Degree Sensitivity Specifity Precision F1-Scores

6 a.m. 1.19× 108 0.172 49.4 0.905 0.098 0.493 0.637
10 a.m. 1.23× 108 0.171 50.1 0.895 0.101 0.503 0.644
2 p.m. 1.22× 108 0.176 40.5 0.896 0.096 0.501 0.643
6 p.m. 1.21× 108 0.173 25.5 0.900 0.100 0.490 0.635
10 p.m. 1.18× 108 0.167 24.6 0.891 0.103 0.494 0.636
2 a.m. 1.24× 108 0.173 16.8 0.906 0.102 0.496 0.641

5.2.2. Effect of Interaction Intensity in the Communities

Once the co-occurrence networks between species are constructed, we investigate
the community structure that these interactions generate. In each sampling instance, we
identify microbial communities based on the interaction of the corresponding species.
These interaction networks of communities evolve with each sampling, both in terms of
the number of communities and the composition of these communities. The depth of this
identification is carried out at seven taxonomic levels. The original dataset comprises eight
taxonomic levels, as described in Table 3. The sampling time reveals preferences in the
interactions among certain communities. For instance, some of the microbial communities
tend to be more inclined to interact during the day, likely due to the increased presence
of the 18S rRNA gene within their taxonomy. Tukey–Kramer tests were conducted in this
sampling. All tests resulted in p < 0.001 in favor of rejecting the null hypothesis: there
is no statistically significant evidence in the mean of the compared communities. The
randomness test is performed on the degree distribution at all sampling points. In all of
these, we find a p-value < 0.001, indicating that the biological network formation structure
does not follow a random structure. The modularity test based on 1000 permutations yields
a p-value < 0.001. This indicates that the formation of these communities is robust and the
interactions are strongly cohesive at each sampling.

Figure 2 shows the different interaction networks of microbial communities. The
relative frequency of the communities is described by the size of their respective node. In
this work, notation DSDGIIC16DGIIC16DGIIC16XspSDGII refers to the microbial commu-
nity Dinophyta-Syndiniales-Dino-Group-II-Clade-16-Dino-Group-II-Clade16Xsp.-Syndiniales-
Dino-Group-II, nomenclature DSDGIIC16DGIIIC16XspSDGII refers to Dinophyta-Syndiniales-
Dino-Group-II-Clade-16-Dino-Group-III-Clade16Xsp-Syndiniales-Dino-Group-II, nomenclature
DSDGIIC1011DGIIC1011XspSDGII refers to Dinophyta-Syndiniales-Dino-Group-II
-Clade-10-11-Dino-Group-II-Clade-10-11Xsp-Syndiniales-Dino-Group-II, MCMOPCCX to
Metazoa-Craniata-Mammalia-Ochotona-princeps-Craniata-CraniataX, DDSDKspDS to
Dinophyta-Dinophyceae-SuessialesX-Karlodiniumsp-Dinophyceae-Suessiales and DDSXSspDS to
Dinophyta-Dinophyceae-SuessialesX-Symbiodiniumsp-Dinophyceae-Suessiales. Unlabeled nodes
refer to unidentified communities according to the seven sequencing depth levels.
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Figure 2. Identifying interaction in communities in sampling networks.

5.2.3. Effects of Parameters on Microbial Diversity

Microbial communities in different environments can vary widely in their composition
and structure. Though the experimenter cannot necessarily influence ecological parame-
ters, it is valuable to know which factors may cause problems in co-occurrence network
inference. We considered the effect of species richness, community evenness, and similarity
of communities across sampling sites.

Our analysis suggests that community evenness does not directly affect co-occurrence
network sensitivity and specificity. However, it may have an indirect effect because uneven
communities require increased sampling depth in order to detect the real species richness,
and if this is inadequate, then the number of detected species (i.e., the effective richness)
is reduced. The diversity of communities between different sites can be calculated via a
variety of metrics [60]. We used a simple and intuitive metric to quantify the similarity of
communities at different sampling sites: the average percentage of species shared between
any two sites (i.e., the Jaccard similarity). The similarity of communities had a large effect
on network sensitivity. The Jaccard index for all community networks is 0.017, indicating a
dynamic configuration in the networks and thus in the microbial structure. This is of utmost
importance due to the intrinsic biological complexity of genomic structure, considering
that some of the taxonomic properties of the 16S rRNA gene are more expressive at certain
times of the day.

5.2.4. Effect of the Non-Observable

The communities evaluated so far have not been in a steady state, representative of
many complex communities [61,62]. Therefore, we investigated the ways in which the
variability in unobservable site properties influences the inference of each network of
communities. To achieve this, we introduced random variations in the carrying capacity
of each species at each site, which can be interpreted as an introduction of between-site
heterogeneity. This addition of inter-site heterogeneity, where each species has varying
advantages, introduced “noise” to the dataset. Nevertheless, we mitigated the impact of
the unobservable factors using Theorem 4.

Table 5 shows the variation of network statistics as the level of heterogeneity changes.
We observed that the number of microbial communities varies depending on the time
of day and the formula for unobserved heterogeneity used. At 6 a.m. and 10 p.m., the
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number of communities was lower when formula
N − i
N − 1

log(log(N)) was applied, which

could indicate a higher cohesion among communities at those hours. In contrast, at 2 p.m.,
regardless of the formula, a constant number of communities was maintained, suggesting
a more robust structure. Regarding the average node degree in the networks, there was
no clear pattern of increase or decrease based on the time of day or the formulation of
unobserved heterogeneity. The values fluctuated under all conditions, implying natural
variability in microbial interactions. Finally, the density of the networks showed significant
variations. For example, at 10 a.m. and 2 p.m., the density was relatively low, implying
a lower proportion of possible connections in these networks. In contrast, at 6 p.m., a
higher density was observed, suggesting greater interconnection among microbial species
at that time.

Table 5. Effect of the non-observable on microbial communities.

Network Time
Ai

N − i
N − 1

log(log(N))
N − i
N − 1

log N1/2 N − i
N − 1

log N

6 a.m. Communities 21 15 15
Mean degree 2.86 2.67 2.67
Denstity 0.14 0.19 0.19

10 a.m. Communities 28 15 21
Mean degree 3 2.67 2.86
Denstity 0.11 0.19 0.14

2 p.m. Communities 21 21 21
Mean degree 2.86 2.86 2.86
Denstity 0.14 0.14 0.14

6 p.m. Communities 15 21 15
Mean degree 2.67 2.86 2.67
Denstity 0.19 0.14 0.19

10 p.m. Communities 15 15 15
Mean degree 2.67 2.67 2.67
Denstity 0.19 0.19 0.19

2 a.m. Communities 28 21 15
Mean degree 3 2.86 2.67
Denstity 0.11 0.14 0.19

6. Discussion and Conclusions

Motivated to explore the field of CNA, we study the introduction of a latent interaction
index, addressing the limitations inherent in traditional compositional similarity indices,
taking into account both observed and unobserved heterogeneity per node, particularly in
the context of large and complex networks.

This index addresses a limitation in network formation, namely interdependence. The
study of complex network formation in the presence of interdependencies is one of the focal
points of recent theoretical and empirical research on networks [5,7,16]. However, with
the exception of Graham’s [7] and Dzemski’s [5] models, none of these papers incorporate
unobserved correlated heterogeneity within the modeling framework, unlike the approach
used here. The results obtained through the development of this index (Theorems 1 and 2)
demonstrate uniform consistency with respect to the homophily parameter vector and
fixed effects. This assures us that the proposed index yields statistically replicable results,
in line with the principles of the law of large numbers and its applicability across various
domains [2,25].

Together with the above, we formulate a Shannon-type entropy measure to quantify
network density. We further establish optimal boundaries for this measurement by uti-
lizing insights from network topology. Additionally, we present asymptotic properties
of pointwise estimation using this entropy function. This analytical approach allows us
the application of scrutiny on the structural dynamics of composition, offering valuable
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insights into the intricate interactions within the network. Here, it is important to note the
relevance of dyads contributing to this measure, as a consequence of both observed and
unobserved factors. In contrast to some studied entropy measures that do not take these
characteristics into account [23,27,29,34,36], it might be more useful and comprehensive
for future research in various fields to conduct a deeper exploration of what other factors
and dimensions could potentially influence the contributions of dyads in the network and,
consequently, network entropy.

The results indicate that as network states become more predictable and intercon-
nected, network entropy decreases. This decrease in entropy signifies a greater degree of
structure and order within the network. Conversely, when network states exhibit greater
independence and randomness, entropy increases, reflecting a more chaotic and less pre-
dictable network structure. These findings align with previous research on the interplay
between network structure and entropy [13,14,63].

The application of the Shannon-type entropy function provides a robust measure for
quantifying network complexity. By establishing optimal bounds for entropy estimation
based on network topology, we ensure the accuracy of our analysis and enhance our
ability to distinguish networks with varying complexity levels. This contributes to a
more nuanced understanding of network dynamics and interactions. Simulations and
comparisons with Erdös–Rényi and Barabási–Albert-type networks, in addition to the
utilization of Erdös–Rényi and Shannon-type entropy, further validate the effectiveness
of our proposed method. Our results demonstrate that the proposed index successfully
distinguishes between networks with different degrees of complexity, even outperforming
classical models in certain cases [18,19].

Despite the inherent complexity of microbiological data [40,61], our method offers a
promising avenue for studying and comprehending the intricate relationships within these
interaction networks and their implications under various parameter specifications. The
ecological results presented here are currently under discussion with experts in the field.
However, we acknowledge the possibility of simplifications and extensions of the model
proposed here.

The theoretical results presented in this article allow us formulation of two statements.
First, the interdependence structure in forming complex networks should not be inde-
pendent of the objective parameters and unobservable node effects. This would enable
researchers to discover causal relationships based on these parameters and the network
formation itself, complementing some of the discussed network models [37,38]. Second,
entropy measures on network structures could be more robust and consistent if only the
dyads influencing their structure were considered. It is well-known that biased estimates
in entropy measures of networks arise from the influence of false dyads on the system [64].
The entropy metric presented here is based solely on the contributing dyads of the network.

In conclusion, this approach enables us to capture both observed and unobserved
heterogeneity per node, providing a more comprehensive understanding of interactions
within ecological communities and other intricate networks. The proposed latent interac-
tion index proves to be an invaluable tool for characterizing the structural dynamics of
networks. Additionally, it is feasible to design a test to evaluate interdependencies in link
formation. It is more plausible to assume that these interdependencies establish a bounded
degree between pairwise interactions [21,24]. The proposed model provides feasibility
and evidence of how to incorporate these interdependencies, which in many cases are
probabilities conditioned on triads (groups of three nodes) [5,7]. It is worth noting that these
probabilities introduce a bias in the linkage decision [6]. While work has been extensive in
reducing this bias in mono-nodal estimation [16,46,47], little is known about multi-nodal
structures. This inherent uncertainty led to the introduction of the entropy function studied
here. It possesses the property of reflecting parameter estimates as a function of the true
parameters, meaning that the estimated entropy converges to the true entropy. This finding
could be a valuable contribution to the challenge of multinodal estimates.
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Appendix A

Appendix A.1. Proofs

To ensure the comprehensiveness of the present work, this part is reserved for the
proofs for Lemma 1 and Theorems 1–7.

Proof of Theorem 1. From Hoeffding’s inequality, ∀ε > 0,

Pr

(∣∣∣∣∣∑i<j

T

∑
t=1

(
Cij,t − pij,t

)
≥ ε

∣∣∣∣∣
)
≤ 2 exp

(
−2ε2

(1− 2κ)2

)
,

where κ ∈ (0, 1) such that pij,t(θ, aN) ∈ (κ, 1− κ). Setting ε =
√

ln(NT), we have

Pr

(∣∣∣∣∣∑i<j

T

∑
t=1

(
Cij,t − pij,t

)
≥
√

ln(NT)

∣∣∣∣∣
)
≤ 2 exp

(
−2 ln(NT)
(1− 2κ)2

)
.

Here, 2 exp


ln

(
1

(NT)2

)
(1− 2κ)2

 =
2

(NT)2 exp
(

1
(1− 2κ)2

)
= O

(
(NT)−2). Therefore,

sup
1≤i,j≤N

sup
1≤t≤T

∣∣∣∣∣∑i<j

T

∑
t=1

(
Cij,t − pij,t

)
≤ ε

∣∣∣∣∣
with probability 1−O

(
(NT)−2).

Proof of Theorem 2. We note that

E
(

∑
i<j

lθ,aN
ij,t |F

)
=

(N
2 )
−1

T

[
∑
i<j

T

∑
t=1

cij,t log(zij,t(θ, aN))− log(1 + zij,t(θ, aN))|F
]

.

The last equation can be written as

E
(

∑
i<j

lθ,aN
ij,t |F

)
=

(N
2 )
−1

T ∑
i<j

T

∑
t=1

(
log
( zij,t(θ, aN)

1 + zij,t(θ, aN)

))
.

Via Theorem 4.2.2 from [48], we have

1
T

T

∑
t=1

log
( zij,t(θ, aN)

1 + zij,t(θ, aN)

)
Pr−→ E

[
log
( zij,t(θ

0, a0
N)

1 + zij,t(θ0, a0
N)

)]
,
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uniformly in θ ∈ Θ when E
(

supθ∈Θ

∣∣∣ log
( zij,t(θ, aN)

1 + zij,t(θ, aN)

)∣∣∣) is finite. Then,

E
(

∑
i<j

lθ,aN
ij,t |F

)
Pr−→
(

N
2

)−1

∑
i<j

E
[

log
( zij,t(θ

0, a0
N)

1 + zij,t(θ0, a0
N)

)]
,

uniformly in θ ∈ Θ.

Proof of Theorem 3. Since θ̂ is based on contribution l θ̂,aN
ij,t , which, by Theorem 2, converges

in probability to a monotonic transformation of vector θ0, from Theorem 4.2.1 in [48], this
implies that limN,T→+∞ θ̂ = θ0 and, therefore, the variance of ‖θ̂ − θ0‖ proceeds to zero
as N, T approaches positive infinity. We let δ > 0 be a fixed small constant. Then, via
Chebyshev’s inequality, we have

lim
N,T→+∞

Pr(‖θ̂ − θ0‖ ≥ δ) ≤ lim
N,T→+∞

Var(‖θ̂ − θ0‖)
δ2 = 0.

This means that the probability of θ̂ being within a small neighborhood of θ0 approaches 1
as N, T becomes large. To determine the rate of convergence, we can express this dif-
ference as ‖θ̂ − θ0‖ = O

(
(NT)−1/2

)
. This indicates that the convergence rate is at least

O
(
(NT)−1/2

)
.

Proof of Lemma 1. Let us calculate difference

δ̂ij(x)− δij(x) =
1

NT

N

∑
l=1

T

∑
t=1

(
(Cil,t − Cjl,t)K̃

(
x− Xl
h(N)

)
−E(Cil,t − Cjl,t|X, A, D)

)
=

1
NT

N

∑
l=1

N

∑
t=1

(
Cil,tK̃

(
x− Xl
h(N)

)
−E(Cil,t|X, A, D)−

− (Cjl,tK̃
(

x− Xl
h(N)

)
−E(Cil,t − Cjl,t|X, A, D)

)
by applying Hoeffding’s inequality twice:

∣∣δ̂ij(x)− δij(x)
∣∣ ≤ 1

NT

(∣∣ N

∑
l=1

T

∑
t=1

Cil,tK̃
(

x− Xl
h(N)

)
−E(Cil,t|X, A)

∣∣+
+
∣∣ N

∑
l=1

T

∑
t=1

Cjl,tK̃
(

x− Xl
h(N)

)
−E(Cil,t − Cjl,t|X, A)

∣∣) = Op((NT)−1).

Proof of Theorem 4. We denote L̃NT(δ̂ij(xl)) =
`NT(δ̂ij(xl))

∑i<j `NT(δ̂ij(xl))
with `NT(x) = L

(
x

σN

)
.

First, we note that

L̃NT(δ̂ij(xl))Xil,tX>jl,t θ̂ = L̃NT(δ̂ij(xl))θ + Xil,tX>jl,t(θ̂ − θ)L̃NT(δ̂ij(xl))+

+ Xil,tX>jl,tθ
(

L̃NT(δ̂ij(xl))− L̃NT(δij(xl))
)
.

Since Xil,t, Xjl,t, and δij(xl) are bounded for all l = 1, . . . , N, by mean value expansion of
`NT(δ̂ij(xl)) around `NT(δij(xl)), we have `NT(δ̂ij(xl))− `NT(δij(xl)) = `′NT(ξ)|δ̂ij(xl)−
δij(xl)|. Here, |`NT(δ̂ij(xl)) − `NT(δij(xl))| = Op(sup |δ̂ij(xl) − δij(xl)|). By Lemma 1,
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|`NT(δ̂ij(xl))− `NT(δij(xl))| = Op((NT)−1). By Theorem 1 and using of Chevyshev in-
equality,

Pr
(∣∣∣Xil,tX>jl,t(θ̂ − θ)L̃nt(δ̂ij(xl))

∣∣∣ > ε
)
≤ E

( 1
ε2

(
Xil,tX>jl,t(θ̂ − θ)L̃nt(δ̂ij(xl))

)2)
,

for all ε > 0, ∀θ, θ̂ ∈ Θ. Now, from the Cauchy–Schwartz inequality,

E
(

Xil,tX>jl,t(θ̂ − θ)L̃nt(δ̂ij(xl))
)2
≤ E

(
Xil,tX>jl,t(θ̂ − θ)L̃nt(δ̂ij(xl))

)2
·

·E
(

Xik,tX>jk,t(θ̂ − θ)L̃nt(δ̂ij(xk))
)2

. (A1)

In addition, E
(

Xik,tX>jk,t(θ̂ − θ)L̃nt(δ̂ij(xk))
)2

= Op(σn(NT)−1). Second, we note that

∑
i<j

∑
t

Xil,tX>jl,tθ(L̃nt(δ̂ij(xl))− L̃nt(δij(xl))) =∑
i<j

∑
t

Xil,tX>jl,tθ×

×
[ `NT(δ̂ij(xl))

∑i<j `NT(δ̂ij(xl))
−

`NT(δij(xl))

∑i<j `NT(δij(xl))

]
≤

∑i<j ∑t `NT(δ̂ij(xl))Xil,tX>jl,tθ

∑i<j `NT(δ̂ij(xl))
·

·
∑i<j ∑t `NT(δij(xl))− `NT(δ̂ij(xl))

∑i<j `NT(δij(xl))
+

+
∑i<j ∑t `NT(δij(xl))− `NT(δ̂ij(xl))Xil,tX>jl,tθ

∑l `NT(δij(xl))

= Op((NT)−1)+

+
∑i<j ∑t(`NT(δij(xl))− `NT(δ̂ij(xl)))X(θ)

∑i<j `NT(δij(xl))

with supX,t Xil,tX>jl,tθ = X(θ).
On the other hand,

∣∣∣(L̃NT(δ̂ij(xl))− L̃NT(δij(xl)))Xil,tX>jl,tθ
∣∣∣ ≤ 2

∑i<j ∑t

[
`NT(δij(xl))− `NT(δ̂ij(xl))

]
X(θ)

∑i<j `NT(δij(xl))
.

Now, we note that
1
N ∑i<j

∣∣∣`NT(δij(xl))− `NT(δ̂ij(xl))
∣∣∣ = Op((NTσn)−1) for all l 6= i, j, and

`NT(δij(xl)) = E(`NT(δij(xl))|X, A, D) +
[
`NT(δij(xl))−E(`NT(δij(xl))|X, A, D)

]
. (A2)

We note that E(`NT(δij(xl))|X, A, D) tends to zero when N → ∞. Using Hoeffding’s
inequality Pr(|`NT(δij(xl)) − E(`NT(δij(xl))|X, A, D)| ≥ ε0) < O((NT)−1/2) ∀ε0 > 0.
Therefore,∣∣∣∑

i<j
∑

t
Xil,tX>jl,tθ(L̃nt(δ̂ij(xl)))− L̃nt(δij(xl))

∣∣∣ = Op((NTσn)
−1) ∀l 6= i, j.

Finally, by mean-value expansion for logit distibution Λ, we have

Λ(zil,t(θ, Ail))−Λ(zjl,t(θ, Ajl)) = Λ′(η)(
q

∑
p=1

αpCil,t−p −
q

∑
p=1

αpCjl,t−p + Xil,tX>jl,tθ + Aij);
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then, there exist nonzero K1, K2, K3 such that

K1|Λ(zil,t(θ, Ail))−Λ(zjl,t(θ, Ajl))| ≤ K2|Λ(zil,t(θ, Ail))−Λ(zjl,t(θ, Ajl))|,

while |(Λ′)−1(η)| ≤ K3. Here,

|Âl(θ)− Al(θ)| =
1
N

∣∣∣∑
i<j

L̃NT(δ̂ij(xl))
(
Xil,tX>jl,t − Al

)∣∣∣
=

1
N

∣∣∣∑
i<j

L̃NT(δ̂ij(xl))
[
Λ(zil,t(θ, Ail))−Λ(zjl,t(θ, Ajl))−Λ′(η)·

· (
q

∑
p=1

αpCil,t−p −
q

∑
p=1

αpCjl,t−p)
]
(Λ′)−1(η)

∣∣∣
≤ 1

N

∣∣∣∑
i<j

L̃NT(δ̂ij(xl))
[
δij(xl)(Λ

′)−1(η)− (
q

∑
p=1

αpCil,t−p −
q

∑
p=1

αpCjl,t−p)
]∣∣∣

≤ 1
N

∣∣∣∑
i<j

L̃NT(δ̂ij(xl))K2K3δij(xl)
∣∣∣+ ∣∣∣( q

∑
p=1

αpCil,t−p −
q

∑
p=1

αpCjl,t−p)
∣∣∣

≤ 1
N

∣∣∣∑
i<j

L̃NT(δ̂ij(xl))K2K3δij(xl)
∣∣∣+ Op(1)

=
1
N

∣∣∣∑
i<j

`NT(δ̂ij(xl))K2K3δij(xl)

∑i<j `NT(δ̂ij(xl)(xl))

∣∣∣+ Op(1)

= Op(max{(NTσN)
−1, σN(NT)−1}),

where in the last equality we use Equation (A2).

Proof of Theorem 5. By Theorem 2 (Law of Large Numbers) and Theorem 3, we have

Ea(Ĥ(C)) = −∑
i<j

T

∑
t=1

Ea(l
θ̂,âN
ij,t log(l θ̂,âN

ij,t )|F )

Pr−→ −T
(

N
2

)−1

∑
i<j

E
(

log

(
zij,t(θ

0, a0
N)

1 + zij,t(θ0, a0
N)

)
log(lθ0,a0

N
ij,t )

)

= −T ∑
i<j

E(lθ0,a0
N

ij,t log(lθ0,a0
N

ij,t ))

= −∑
i<j

T

∑
t=1

lθ0,a0
N

ij,t log(lθ0,a0
N

ij,t )

= H0(C).

Then, for all ε > 0, |Ĥ(C)− H0(C)| < ε. Let us set ε =
1

NT
√

log(NT); then,

Pr
(
|Ĥ(C)− H0(C)| ≥

1
NT

√
log(NT)

)
≤ log(NT)(

1
NT

√
log(NT)

)2
NT

= O((NT)−1). (A3)
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Hence, with probability of at least 1 − O((NT)−1), we have |Ĥ(C) − H0(C)| <
1

NT√
log(NT) for any network C containing the pair of nodes i, j. Taking the supremum

over all C ∈ C, we have

sup
C∈C

∣∣∣Ĥ(C)− H0(C)
∣∣∣ < 1

NT

√
log(NT), (A4)

with probability 1−O((NT)−1).

Proof of Theorem 6. From Theorem 3 and the first-order condition associated with the
concentrated log-likelihood, a mean value expansion offers

√
NT(θ̂ − θ0) = −

[
1

NT ∑
i<j

T

∑
t=1

∂sijt,θ(θ, âN(θ))

∂θ

]−1[
1√
NT

∑
j<i

T

∑
t=1

∂sijt,θ(θ
0, âN(θ

0))

∂θ

]
,

where sijt,θ(θ, aN) denotes the {ij}th dyad’s contributions to the score of the maximum
likelihood estimator associated with vector θ. After applying the result for the Hessian of
the concentrated log-likelihood derived immediately above, we obtain

√
NT(θ̂ − θ0) = J −1

0 (θ)×
[

1√
NT

∑
j<i

T

∑
t=1

∂E
(
sijt,θ(θ

0, âN(θ
0))
)

∂θ

]
+ op(1) (A5)

since
1

NT ∑i<j ∑T
t=1

∂E(sijt,θ(θ,âN(θ)))
∂θ

Pr−→ −J0(θ). Tedious calculations, along with the calcu-
lations immediately above, produce

1√
NT

∑
j<i

T

∑
t=1

∂E
(

sijt,θ0(θ0, âN(θ
0))
)

∂θ
=

1√
NT

∑
j<i

T

∑
t=1

∂E
(

ŝijt,θ0(θ0, â0
N)
)

∂θ
+ op(1), (A6)

where ŝijt,θ̂(θ̂, âN) = sijt,θ̂(θ̂, âN)−Hθa>N
(C)HaN a>N

(C) · sijt,aN (θ̂, âN). Substituting Equation (A6)
into Equation (A5) results in

√
NT(θ̂ − θ0) = J −1

0 (θ) + J −1
0 (θ)

1√
NT

∑
j<i

T

∑
t=1

∂E
(

ŝijt,θ0(θ0, âN)
)

∂θ
+ op(1) (A7)

Applying the Central Limit Theorem to the second addend, we have
√

NT(θ̂ − θ0)
D−→

N
(
J −1

0 (θ),J0(θ)
1/2
)

.

Proof of Theorem 7. (i) Here, we note that

H(C) =−∑
i<j

T

∑
t=1

lθ,aN
ij,t

K
log

 lθ,aN
ij,t

K

 = −
N−1

∑
i=1

N

∑
j=i+1

T

∑
t=1

lθ,aN
ij,t

K
log

 lθ,aN
ij,t

K


= −

T

∑
t=1

N−1

∑
i=1

N−1

∑
j=i+2

lθ,aN
ij,t

K
log

 lθ,aN
ij,t

K

− N−1

∑
i=1

lθ,aN
i(i+1),t

K
log

 lθ,aN
i(i+1),t

K


−

N−1

∑
i=1

lθ,aN
iN,t

K
log

(
lθ,aN
iN,t

K

)]
,

where we can write

N−1

∑
i=1

N−1

∑
j=i+2

lθ,aN
ij,t =

N−1

∑
i=1

N

∑
j=i+1

lθ,aN
ij,t −

N−1

∑
i=1

(lθ,aN
i,i+1 − lθ,aN

iN ),
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allowing us definition of a new vector over the parameters, i.e., qt = (qij,t)
N−1,N
i=1,j=i+1 as

qij,t =
lθ,aN
ij,t

∑N−1
k=1 ∑N

l=k+1 lkl,t −∑N−1
k=1

(
lθ,aN
k(k+1),t − lθ,aN

kN,t

) =
lθ,aN
ij,t

ρkl,N
.

From this definition arises the fact that 0 ≤ qij,t ≤ 1; then,

H(qt) =−
N−1

∑
i=1

N

∑
j=i+1

qij,t log(qij,t)

= −
N−1

∑
i=1

N−1

∑
j=i+2

lθ,aN
ij,t

ρkl,N
log

 lθ,aN
ij,t

ρkl,N


= −

N−1

∑
i=1

N−1

∑
j=i+2

lθ,aN
ij,t

ρkl,N

log

 lθ,aN
ij,t

K

+ log
(

K
ρkl,N

)
= − K

ρkl,N

N−1

∑
i=1

N−1

∑
j=i+2

lθ,aN
ij,t

K
log

 lθ,aN
ij,t

K

− N−1

∑
i=1

N

∑
j=i+2

lθ,aN
ij,t

ρkl,N
log
(

K
ρkl,N

)

= − K
ρkl,N

N−1

∑
i=1

N−1

∑
j=i+2

lθ,aN
ij,t

K
log

 lθ,aN
ij,t

K

− log
(

K
ρkl,N

)
.

Returning to the entropy with respect to vector qt, we have

−
N−1

∑
i=1

N−1

∑
j=i+2

lθ,aN
ij,t

K
log

 lθ,aN
ij,t

K

 =
ρkl,N

K

[
H(qt) + log

(
K

ρkl,N

)]
,

and via Theorem 2.6.4 from [51],

H(qt) ≤ log(N(N − 1)).

Then,

−
N−1

∑
i=1

N−1

∑
j=i+2

lθ,aN
ij,t

K
log

 lθ,aN
ij,t

K

 ≤ ρkl,N

K
log
(

K(N(N − 1))
ρkl,N

)
.

Therefore, the entropy satisfies

H(C) = −
T

∑
t=1

N−1

∑
i=1

N−1

∑
j=i+2

lθ,aN
ij,t

K
log

 lθ,aN
ij,t

K

− N−1

∑
i=1

lθ,aN
i(i+1),t

K
log

 lθ,aN
i(i+1),t

K


−

N−1

∑
i=1

lθ,aN
iN,t

K
log

(
lθ,aN
iN,t

K

)]

≤
ρkl,N

K
log
(

K(N(N − 1))
ρkl,N

)
−

N−1

∑
i=1

lθ,aN
i(i+1),t

K
log

 lθ,aN
i(i+1),t

K


−

N−1

∑
i=1

lθ,aN
iN,t

K
log

(
lθ,aN
iN,t

K

)
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≤
ρkl,N

K
log
(

K(N(N − 1))
ρkl,N

)
− 1

K

[( N−1

∑
i=1

p̂i,i+1

)
log

(
∑N−1

i=1 lθ,aN
i(i+1),t

(N − 1)K

)
−

−
( N−1

∑
i=1

lθ,aN
iN,t

)
log

(
∑N−1

i=1 lθ,aN
iN,t

(N − 1)k

)]
.

(ii) This proof is based on the fact that logarithms are concave functions. We know

that logb(x)− logb(y) ≤
1

ln(b)

(
x− y

y

)
, ∀x, y > 0. Then,

log($ij,F )− log($ij,F ′) ≤
1

ln(2)

($ij,F − $ij,F ′

$ij,F ′

)
,

allowing us constructioon of the following inequality:

$ij,F log($ij,F )− $ij,F log($ij,F ′) ≤
1

ln(2)

(
($ij,F )

2 − $ij,F$ij,F ′

$ij,F ′

)
.

Then,

−$ij,F log($ij,F ) ≥ −
1

ln(2)

(
($ij,F )

2 − $ij,F$ij,F ′

$ij,F ′

)
− $ij,F log($ij,F ′).

Finally, considering the sum over i and over the corresponding j, we have the desired result.

Appendix A.2. Weighted Likelihood

We start by investigating a panel data logit model with fixed effects, a p-lagged
dependent variable, and a set of strictly exogenous explanatory variables. We let

CT
ij = (Cij,t−1, Cij,t−2, . . .).

The model logit can be written as

Pr
(
Cij,t = 1

∣∣CT−1, X, D, A
)
=

exp
(

∑
p
l=1 αlCij,t−l + βX>ij,t + Dij,t + Aij

)
1 + exp

(
∑

p
l=1 αlCij,t−l + βX>ij,t + Dij,t + Aij

) , (A8)

with i, j ∈ {1, . . . , N} and t ∈ {1, . . . , T}. We assume that the autoregressive order
p ∈ {1, 2, . . .} is known, and the outcomes Cij,t are observed for time t = t0, . . . , T. The
total number of time periods for which outcomes are observed is Tobs = T + p. All
probabilistic statements are for the model distribution generated under the true model
parameters α0 and β0. For example, if Cij = (Cij,1, . . . , Cij,T)

>, Xij = (Xij,1, . . . , Xij,T)
>,

and Dij = (Dij,1, . . . , Dij,T)
>, then Pr(Cij,t = 1

∣∣Cij,0 = c0, Xij = x, Dij = d, Aij = a) =

pc0(α
0, β0, c, x, d, a), where

pc0(α, β, c, x, d, a) := ∏
i<j

T

∏
t=1

[
1

1 + exp
(

∑
p
l=1 αlcij,t−l + βx>ij,t + dij,t + aij

)]1−cij,t

×
[

exp
(

∑
p
l=1 αlcij,t−l + βx>ij,t + dij,t + aij

)
1 + exp

(
∑

p
l=1 αlcij,t−l + βx>ij,t + dij,t + aij

)]cij,t

. (A9)

We drop index ij until we discuss estimation, that is, instead of Cij,t, Xij,t, Dij,t Aij, we just
write C , X, D, and A for the corresponding random variables. Our first goal is to obtain the
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conditional likelihood under some considerations in Equation (1) that are valid regardless
of the realization of A fixed effects. Following [44], we consider events

B1 = {cij,0 = c0, . . . , cij,t−1 = ct−1, cij,t = 0, cij,t+1 = ct+1, . . . ,

cij,s−1 = cs−1, cij,s = 1, cij,s+1 = cs+1, . . . , cij,T = cT},

B2 = {cij,0 = c0, . . . , cij,t−1 = ct−1, cij,t = 1, cij,t+1 = ct+1, . . . ,

cij,s−1 = cs−1, cij,s = 0, cij,s+1 = cs+1, . . . , cij,T = cT},

where 1 ≤ t < s < T − 1 and c0, c1, c2, . . . , cT are either 0 or 1. A simple calculation
shows that

Pr(B1
∣∣c, x, d, a) =

1

1 + exp
(

∑
p
l=1 αlct−l + βx>ij,t + dij,t + aij

)
×

exp
(

∑
p
l=2 αlct−l + βx>ij,t + dij,t + aij

)ct+1

1 + exp
(

∑
p
l=2 αlct−l + βx>ij,t + dij,t + aij

)
×

exp
(

∑
p
l=1 αlcs−l + βx>ij,s + dij,s + aij

)
1 + exp

(
∑

p
l=1 αlcs−l + βx>ij,s + dij,s + aij

)
×

exp
(

∑
p
l=1 βlcs−l + βx>ij,s+1 + dij,s+1 + aij

)cs+1

1 + exp
(

∑
p
l=1 αlcs−l + βx>ij,s+1 + dij,s+1 + aij

) ,

and

Pr(B2
∣∣c, x, d, a) =

exp
(

∑
p
l=1 αlct−l + βx>ij,t + dij,t + aij

)
1 + exp(∑

p
l=1 αlct−l + βx>ij,t + dij,t + aij)

×
exp

(
∑

p
l=1 αlct−l + βx>ij,t + dij,t + aij

)ct+1

1 + exp
(

∑
p
l=1 αlct−l + βx>ij,t + dij,t + aij

)
× 1

1 + exp
(

∑
p
l=1 αlcs−l + βx>ij,s + dij,s + aij

)
×

exp
(

∑
p
l=2 αlcs−l + βx>ij,s+1 + dij,s+1 + aij

)cs+1

1 + exp
(

∑
p
l=2 αlcs−l + βx>ij,s+1 + dij,s+1 + aij

) .

Then,

Pr(B1
∣∣c, x, d, a, B1 ∪ B2, xij,t+1 = xij,s+1) =

1

1 + exp
(
(xt − xs)β + α1(ct+1 − cs+1) + ∑

p
l=1 αl(ct−l − cs−l)1{s− t > 1}

) , (A10)
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and

Pr(B2
∣∣c, x, d, a, B1 ∪ B2, xij,t+1 = xij,s+1) =

exp
(
(xt − xs)β + α1(ct+1 − cs+1) + ∑

p
l=1 αl(ct−l − cs−l)1{s− t > 1}

)
1 + exp

(
(xt − xs)β + α1(ct+1 − cs+1) + ∑

p
l=1 αl(ct−l − cs−l)1{s− t > 1}

) , (A11)

which does not depend on aij. In the special case where all the explanatory variables
and the stochastic process {xij,t}t∈T satisfy Pr(xij,t+1 − xij,s+1 = 0) > 0, we can use
Equations (A10) and (A11) to make inference about α and β. In particular,

(α̂, β̂) = arg max
α,β

1
T

(
N
2

)−1

∑
i<j

∑
2≤t<s≤T−1

1{cij,t + cij,s = 1}K
(

xij,t+1 − xij,s+1

σn

)

× log

 exp
(
(xt − xs)b + a1(ct+1 − cs+1) + ∑

p
l=1 al(ct−l − cs−l)1{s− t > 1}

)cij,t

1 + exp
(
(xt − xs)b + a1(ct+1 − cs+1) + ∑

p
l=1 bl(ct−l − cs−l)1{s− t > 1}

)
. (A12)

Here, K(·) is a kernel density function that gives appropriate weight to link {ij}, while σn is
a bandwidth that shrinks as n increases. The asymptotic theory requires that kernel density
be chosen so that a number of regularity conditions cn be determined. If Pr(Xij,t+1 =
Xij,s+1) > 0 (e.g., discrete covariates or controlled experiments) and Xij,t+1 − Xij,s+1 has
sufficient variation conditional on Xij,t+1 = Xij,s+1, then the K(·) function can be re-
placed by a 1(Xij,t+1 − Xij,s+1 = 0) indicator function, and the resulting estimator has
the usual (NT)−1/2 rate of convergence. However, if the regressors are continuous or
have high dimensions, then the estimator, while still consistent and asymptotically nor-
mal, has a convergence rate slower than (NT)−1/2. Also, this rate falls as the number of
covariates increases.
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