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Simple Summary: Understanding the prevalence of the converse Bergmann’s rule for ectotherm
animals and how often this rule is broken is of utmost importance to understand the underlying
mechanisms allowing organisms to adapt to different environments and the selective pressures
they face. By using the ground beetle Ceroglossus chilensis as a biological model, we provide a
practical example of testing the converse Bergmann rule in an ectotherm with a narrow geographical
distribution in Chile.

Abstract: The converse Bergmann’s rule is a pattern of body size variation observed in many
ectothermic organisms that contradicts the classic Bergmann’s rule and suggests that individuals
inhabiting warmer climates tend to exhibit larger body sizes compared to those inhabiting colder
environments. Due to the thermoregulatory nature of Bergmann’s rule, its application among
ectotherms might prove to be more complicated, given that these organisms obtain heat by absorbing
it from their habitat. The existence of this inverse pattern therefore challenges the prevailing notion
that larger body size is universally advantageous in colder climates. Ceroglossus chilensis is a native
Chilean beetle that has the largest latitudinal range of any species in the genus, from 34.3◦ S to 47.8◦ S.
Within Chile, it continuously inhabits regions extending from Maule to Aysen, thriving on both native
and non-native forest species. Beyond their remarkable color variation, populations of C. chilensis
show minimal morphological disparity, noticeable only through advanced morphological techniques
(geometric morphometrics). Based on both (1) the “temperature–size rule”, which suggests that body
size decreases with increasing temperature, and (2) the reduced resource availability in high-latitude
environments that may lead to smaller body sizes, we predict that C. chilensis populations will follow
the converse Bergmann’s rule. Our results show a clear converse pattern to the normal Bergmann rule,
where smaller centroid sizes were found to be measured in the specimens inhabiting the southern
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areas of Chile. Understanding the prevalence of the converse Bergmann’s rule for ectotherm animals
and how often this rule is broken is of utmost importance to understand the underlying mechanisms
allowing organisms to adapt to different environments and the selective pressures they face.

Keywords: converse Bergmann’s rule; centroid size; Carabidae; geometric morphometrics; body size;
sexual dimorphism

1. Introduction

One of the most used ecogeographical rules is the one Carl Bergmann published in
1847. Even though the exact translation of this rule initially published in German has been
a matter of controversy [1], there is a consensus that Bergmann’s rule predicts that the
body size of living organisms increases as temperature decreases [2–4]. This size growth is
related to a thermoregulatory phenomenon in endotherm organisms; as the ratio of volume
versus surface area increases in animals, they retain heat better, and this can be explained
by the square–cube law, which predicts that volume will increase faster than the surface
area [3,5]. On the contrary, the converse Bergmann’s rule is a pattern of body size variation
observed in many ectothermic organisms that contradicts the classic Bergmann’s rule and
suggests that individuals living in warmer environments tend to be larger than those living
in colder environments [3,6,7].

Some studies have explained Bergmann-type clines by other features, different from
thermoregulation, such as dispersal, resource, habitat and/or genetics [1,5,8–11]. This rule
has been demonstrated for many organisms, for example, Meiri and Dayan [12], with a
focus on endothermic organisms, analyzed 94 species of birds and 149 species of mammals
and found that 72% and 65% of them, respectively, follow Bergmann’s rule. In this way,
the authors conclude that this rule can be a valid ecological generalization for these two
groups of endotherms. However, when studying the application of Bergmann’s rule in
major ectotherm groups, contrasting responses can be observed [7,13,14]. While Anurans
increase their body size with latitude, lizards and snakes (squamates) reverse (or converse)
this rule by decreasing their size as latitude increases [15,16].

Indeed, as Bergmann’s rule involves a thermoregulatory process, its generalization
in ectotherms may be more complicated as they obtain heat by absorbing it from the
environment [13,17]. As volume increases, organisms require more heat to alter their body
temperature. This adaptation is likely beneficial in extreme climates. Conversely, a larger
surface area combined with reduced volume allows for quicker heat absorption, but also
results in faster heat loss, making it a strategy potentially favored in more stable climates.
An explanation is that ectotherms will grow slowly in a colder climate but will finally
reach a more significant size due to increased cell size [18,19]. The question of whether
ectotherms adhere to a converse Bergmann’s rule has been contentious [7].

In understanding the prevalence of the converse Bergmann’s rule for ectotherm an-
imals and how often this rule is broken, it is of utmost importance to understand the
underlying mechanisms allowing organisms to adapt to different environments and the
selective pressures they face.

However, recent research offers empirical evidence of an inverse relationship between
body size and latitude. This challenges conventional understanding and calls for a closer ex-
amination of the underlying mechanisms [6,8,20]. For example, in high-latitude regions like
the Arctic, sub-Arctic and sub-Antarctic ecosystems, smaller-bodied individuals (groups)
have been documented, in contrast to those found at lower latitudes, with larger-bodied
groups [21]. The existence of this converse pattern challenges the prevailing notion that
larger body size is universally advantageous in colder climates.

Nevertheless, since current evidence suggests that different ectotherm taxa could
express different clinal patterns in regard to Bergman’s rule, a detailed exploration of
this distributional pattern is needed [7,13]. For example, insects are considered one of
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the largest ectothermic groups in the world, and this size–temperature-dependent rule is
“followed” only by some species [3]. Shelomi [3] states the importance of well-designed
and continuous intraspecific studies as patterns regarding this rule can vary substantially
even between closely related species [22]. Even though most species of insect groups are
more likely to follow the converse Bergmann’s rule (such as Coleoptera), some groups
exactly follow Bergmann’s rule (Diptera) or show no significant trends, like Plecoptera [3],
water beetles [23] or even Ephemeroptera [14]. Interestingly, when the phylogenetic inertia
associated with an insect group was controlled through comparative phylogenetic analyses,
an insect group followed the converse Bergmann’s rule; see the case of the bumblebee
in [24].

The genus Ceroglossus (Coleoptera: Carabidae) encompasses a group of colorful ground
beetles endemic to temperate forests of southern South America [25,26]. The genus com-
prises eight described species: C. chilensis (Eschscholtz), C. darwini (Hope), C. speciosus
Gerstaecker, C. magellanicus Géhin, C. buqueti (Laporte), C. suturalis (Fabricius), C. ochsenii
(Germain) and C. guerini (Germain), although it may harbor higher taxonomic diversity [27].
Most of the species exhibit a striking pattern of sympatric color convergence hypothesized
as a product of Müllerian mimicry [28]. Ceroglossus chilensis, also known as the magnificent
Chilean beetle, has the largest distribution range among all these species (from −34.3◦ to
−47.8◦, Figure 1). In Chile, it has a continuous distribution from the Maule Region to the
Aysen Region and can be found in native and exotic forest species [29,30]. Aside from their
high color diversity, populations of C. chilensis exhibit little morphological differences that
are only detected when using advanced morphological tools [25,31,32]. In addition, the
species presents sex and size dimorphism [25,33]. Benitez et al. [31] found for Ceroglossus
chilensis that disparities in morphology and variations among sampling sites in the southern
population in Chile stem from differences in shape rather than size; their results suggest
that size variations among populations are inevitably shaped by environmental influences.
Nevertheless, the historical impact of anthropogenic activities has introduced disturbances
in the Aysén Region, contributing to a profoundly heterogeneous vegetation landscape.
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Based on both (1) the “temperature–size rule”, which suggests that body size decreases
with increasing temperature, and (2) the reduced resource availability in high-latitude
environments that may lead to smaller body sizes, we predict that C. chilensis populations
will follow the converse Bergmann’s rule.

2. Materials and Methods

Ceroglossus chilensis description: Adults exhibit an elongated form and considerable
variability in body coloration; the head, thorax and elytra display iridescent shades of black,
green and blue. Ventrally, they are black, as are the legs, maxillary palps and labial palps.
The head and pronotum are blue and covered with fine punctuations. The elytra, in general,
are very shiny, convex and elongated, with a dark red coloration. Sexual dimorphism is
subtly apparent and can be observed in variations in the shape of the pronotum, elytra
and abdomen, resulting from intrasexual competition. Males exhibit keels (carinae) on the
antennal segments 6, 7 and 8. The tarsi of the first pair of legs are widened, and the apex of
the elytra is rounded [34]. Dorsally, the elytra are sculpted and have pronounced humeral
angles. Metathoracic wings are absent [34–36]. In females, the pronotum is wider and
longer compared to males, with a small longitudinal line along the midline; the abdomen
is larger, interpreted as an adaptation for egg production, and the elytra are more pointed
at the apex [29].

Generally, for Ceroglossus species, the developmental cycle lasts approximately three
months [29]. For oviposition, females construct galleries in the soil where they deposit
eggs, numbering from 10 to 15. From laying, it takes an average of two weeks for the eggs
to hatch. The development times of different larval stages vary; for example, the first larval
stage lasts two weeks, the second stage lasts three weeks and the third stage lasts two
weeks. Larvae always molt on the surface, hidden under pieces of bark [29]. Subsequently,
the larva buries itself 10 cm in the soil and constructs a pupal chamber within which it
remains immobile. This last stage lasts for about two weeks, during which certain segments
and body parts are pigmented (tibiae, eyes, mandibles). At the end of metamorphosis, the
fully decolorized imago emerges, and the chromatogenesis period lasts about 24 h. Adults
are preferably found in January, February and March [34–36].

Sampling: Pitfall traps were placed in isolated geographic areas across the whole
latitudinal distribution of Ceroglossus chilensis in Chile.

Two localities were selected in the northern part of their distribution: (1) the coastal
mountain range (CC, Santa Juana, 37.1750◦ S, 72.9457◦ W) and (2) the Andes foothill (PC,
Coihueco 36.62611◦ S 71.83444◦ W). Two localities were selected in the center, namely
(1) Manzanares (MZ, 38.4060◦ S, 71.5961◦ W) and (2) Puyehue (PM, 40.6694◦ S, 72.1720◦

W), while three were selected in the southern distribution limit: L1, L2 and L3 (Aysen;
47.79139◦ S, 73.56778◦ W). Twelve traps were installed separated approximately 5 m from
each other, for 3 days and 3 nights (Figure 1).

In the geometric morphometric analysis, complete variation in shape was considered,
and this analysis was performed using a ventral view of males and females with an Olym-
pus X-715 digital camera (Olympus, Tokyo, Japan). Following the methodology described
in [31], eighteen landmarks (LMs, anatomical homologous points) were digitized on every
picture using the software TpsDig v2.31 [37] (Figure 2). Once the 2D x-y coordinates were
obtained for all landmarks, the shape information was extracted using a Procrustes fit.
This procedure, also called Procrustes superimposition, is a procedure that removes the
information of size, position and orientation to standardize each specimen according to
centroid size [38,39]. A Procrustes ANOVA in the software MorphoJ 1.07a was first calcu-
lated to compare a first set of landmarking processes with a second to determine if there
was any measurement error in the digitalization procedure [40,41]. After that, using the
revised dataset, a covariance matrix of shape individuals was performed to calculate all
the multivariate analyses of shape. A principal component analysis (PCA) was performed
to simulate the shape space, and the first three components were quantified. The proxy
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of geometric size was analyzed using the centroid size, which represents the center of the
landmark configuration [42] (Figure 2).
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Figure 2. Schematic representation of the landmarking procedure in Ceroglossus chilensis; the center
point represents the gravity center of the distance between every landmark used to calculate the
centroid size.

The centroid size was computed as the average of the 2D coordinates of all landmarks
and was calculated as the square root of the summed squared distances. This proxy is
a single value that provides an approximation of overall size considering shape differ-
ences [38,42]. A generalized linear mixed model (GLMM) was used to evaluate the overall
effect of both sex and zone of location (north, center and south) on the centroid size of
the sampled individuals. This method allows the inclusion of fixed (sex and locality) and
random (individuals within populations) factors in model structure, while managing to
fit non-Gaussian response distributions [43]. Accordingly, after exploring the residuals of
the response variable under different density distribution scenarios, we used the Gamma
distribution (log-link), which has been observed to better capture the variability of right-
skewed response distributions [44]. In addition, to evaluate the population as a factor
within each zone, independent GLMM models were fitted for the south, center and north
datasets including the population as a fixed factor. In addition, to evaluate the effect of sex
in the body morphometrics in each population, independent t-tests were performed for
each population dataset. The R language and environment v.4.2.0 (R-CoreTeam 2022) was
used for all the analyses; GLMM analysis was performed through the “glmer” function
from the lme4 R-package [45].

Finally, to examine the differences in shape between localities, a Procrustes ANOVA
and a canonical variate analysis were performed between sex and localities. In addition,
multivariate regression was performed in order to quantify allometric differences between
shape and size, using the centroid size as an independent variable and after running a
permutation test with 10,000 rounds using the software Morphoj 1.07a [46].

3. Results

First, geometric morphometric results indicate that using the Procrustes ANOVA to
calculate the digitizing error shows that the mean square for individual variation exceeded
the measurement error (0.000106 < 0.0000362), which means ME is small enough to proceed
with further analyses. The first three principal components (PCs) accumulated 58.9% of the
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shape variation (PC1 = 26.2%, PC2 = 18.9% and PC3 = 13.6%). Using the centroid size, the
overall GLMM model failed to detect differences in the density distributions of centroid
values between females and males across zones but did find a significant effect of the zone
independent of the sex (Table 1). Between the north and center zones, no differences were
observed, probably due to their large intra-population variability. However, both the north
and center zones significantly differ from the south, and this was observed in both females
and males (Figure 3).

Table 1. GLMM model parameters and statistics for the complete dataset (All) and by geographic
zones (North, Center and South). In each case, the compared factor levels are in parentheses. Values
of p indicate statistical significance (p < 0.05) in explaining the respective model variance.

Trait Factor b SE t p

All

Intercept −7.516 0.140 −53.54 <0.0001
Sex (female–male) 0.098 0.111 0.87 0.3804
Zone (C–N) 0.137 0.175 0.78 0.4320
Zone (C–S) −0.322 0.155 −2.07 0.0378
Zone (N–S) −0.460 0.140 −3.28 0.0010

North
Intercept −7.414 0.065 −113.61 <0.0001
Sex (female–male) 0.077 0.085 0.90 0.3660
Population
(PC–CC) −0.055 0.081 −0.68 0.4960

Center
Intercept −7.592 0.068 −110.53 <0.0001
Sex (female–male) 0.270 0.085 3.17 0.0015
Population
(PM–MZ) −0.081 0.085 −0.96 0.3290

South

Intercept −7.575 0.051 −145.80 <0.0001
Sex (female–male) 0.094 0.048 1.96 0.049
Population (B2–B1) −0.384 0.059 −6.42 <0.0001
Population (B3–B1) −0.529 0.064 −8.14 <0.0001
Population (B3–B2) 0.140 0.056 2.48 0.0131

In addition, the zone-specific GLMM models point to a similar direction; differences
between the studied factors (sex and population) increase in relevance towards southern
latitudes (Table 1).

In the north, neither the sex nor the population resulted as significant in determining
the distribution of the centroid values; by contrast, both factors appeared to influence this
distribution in the south zone. Also, in the center zone, sex was a significant factor in the
model, nevertheless, in both the center and south zones, the overall differences between
females and males seem to be driven by some populations more than others (Figure 4).
This was corroborated by the independent t-tests realized between both sexes within each
population (Table 2), which clearly denoted that females and males significantly differ in
their log-centroid values only in the MZ (center) and the B3 (south) populations.

The canonical variate analysis showed three clearly identified groups from the north,
center and south localities (Figure 5). This shape variation was principally determined by
the vector movement of landmark 18 for females between north and south, which also is
related to the elongation of the body shape. A widening of the morphology product of
the contraction of the pairs of landmarks 13–14 and 15–16 also was noticed. For males
also, landmark 18 noticeably changes between north and south; nevertheless, there is less
variation between individuals of the center of the distribution with a left contraction of
the pair of landmarks 5–6, where the abdomen begins, and a bit of elongation of the end
of the thorax at landmarks 3 and 4. All these modifications in shape were statistically
significant by sex and locality (ANOVA by sex: F: 53.28, p: 0.004; ANOVA by locality:
F: 55.69, p: <0.001).
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landmark 18 noticeably changes between north and south; nevertheless, there is less var-
iation between individuals of the center of the distribution with a left contraction of the 
pair of landmarks 5–6, where the abdomen begins, and a bit of elongation of the end of 
the thorax at landmarks 3 and 4. All these modifications in shape were statistically 

Figure 4. Comparison of the log-centroid values between sexes (female–male) by populations within
each of the three geographic zones (North, Center and South). The probability (p) values are indicated
only for those populations for which the t-test was significant (p < 0.05).
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Table 2. Independent t-test between female and male centroid values (log) within each sampled pop-
ulation. CI: confidence interval (95%, low or high), t: t-statistic, d.f.: degrees of freedom, p: probability
value. p-values show those populations for which the difference between the sex group means was
statistically different from zero (p < 0.05).

Zone Population Mean Female Mean Male Mean Diff CI-Low CI-High t d.f. p

North
CC 0.000616 0.000701 −8.55 × 10−5 −2.3 × 10−4 6.1 × 10−5 −1.199 25.62 0.2411
PC 0.000612 0.000725 −1.13 × 10−4 −4.7 × 10−4 2.5 × 10−4 −0.727 7.12 0.4904

Center
MZ 0.000531 0.000688 −1.56 × 10−4 −2.6 × 10−4 −4.6 × 10−5 −2.922 24.91 0.0072
PM 0.000512 0.000605 −9.25 × 10−5 −2.2 × 10−4 3.8 × 10−5 −1.444 32.15 0.1581

South
B3 0.000291 0.000375 −8.34 × 10−5 −1.3 × 10−4 −3.0 × 10−5 −3.137 53.72 0.0027
B2 0.000395 0.000382 1.34 × 10−5 −4.3 × 10−5 7.0 × 10−5 0.471 77.81 0.6389
B1 0.000527 0.000579 −5.18 × 10−5 −1.1 × 10−4 1.4 × 10−5 −1.587 32.95 0.1219
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4. Discussion

Since the article about Bergmann’s rule was published in 1847, there has been a
continuous debate regarding its applicability in ectothermic organisms such as insects
and vertebrates. This is primarily due to the thermoregulatory mechanisms that do not
consistently explain patterns observed in these study models. Contradictory results have
been observed among studies, further fueling the discussion [10,11,23,47].

Several authors mention that the variability of sizes according to latitude can re-
spond to different factors, which are different from each other. These different factors,
originating from different climatic causes, when acting together, produce many interme-
diate patterns, which in turn are determined by the taxon in the studio or the locality of
origin [3,10,11,23,48].

In the case of C. chilensis, we analyzed and questioned this pattern in terms of the
sexual traits, to evaluate if there are differences between size and sexes along the latitudinal
gradient studied. Nevertheless, there is no generalized pattern of sexual dimorphism,
except for the MZ locality in the center of the sampled area. This result may indicate
a more plastic response to the selective pressures of the species that are not necessarily
linked to the latitude or the temperature conditions. Similarly, in terms of the body size
pattern, the results indicate the presence of a negative correlation between size and latitude,
showing significantly smaller individuals towards higher latitudes. It is also important to
point out that more than the body sizes themselves, significant differences are observed
in the frequencies of the different size categories. It is observed that although the mean
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size of individuals collected in the north of the distribution is similar to the mean size of
individuals collected in the center, the northern zone shows a greater amplitude of variation
in body size, while in the central and southern zones, the amplitude of variation in body
size is much more reduced. These results could indicate an effect of the environmental
variability associated (temperature of microhabitats) with the different localities. Since the
northern zone is less climatically variable, there would be greater climatic opportunities for
the appearance of different generations, representing a multivoltine pattern [8,49–51]. If
this pattern is associated with favorable climatic conditions of shorter duration between
unfavorable conditions, it could indicate a shorter duration of the larval stages, which
would produce smaller adults, and likewise, favorable periods of longer duration would
produce larger adults [51–55]. This pattern is only observable in males of C. chilensis, which
could be a sign of a high-competition scenario among males from the northern zone [33],
because females have less variable body sizes. A similar pattern has been observed in the
body sizes of various species of arthropods subjected to environmental variability, where
a large variation in body sizes associated with the duration of the season or the temporal
variation of climatic and environmental events is observed [31,56–58].

As for individuals from the central and southern zones, a similar pattern is observed
in both males and females, where the tendency is for smaller body sizes at high latitudes,
with lower variability. These results are concordant with the ones obtained by Baranovská
and Knapp [6] in beetle species, where a converse Bergmann’s clinal pattern was found
across an altitudinal gradient in four of the eight species studied, while the body sizes of
the other four species showed no pattern.

Shelomi [3] indicates that the majority of the studies that examine the relationship
between body size and latitude/altitude in arthropods show that there is no relationship,
especially when analyzed over wide geographical ranges or in interspecies comparisons,
but also that patterns emerge mainly in studies of restricted geographical ranges or between
populations of the same species. This could give us clues that, if the mechanisms underlying
the processes of body variation in arthropods are not completely clear [3,10,11,23,59], varia-
tion could be a response to ecological conditions associated with the altitudinal gradient,
without necessarily being thermoregulatory in nature [1,2,47,48], and may simultaneously
respond to different causes. An example of this has been observed by Romero et al. [60]
in an experiment carried out all over the world, where they observed the size variation
of arthropods as a function of the use of microclimatic shelters, such as the leaf curling
produced by some arthropods. Thus, they observed that body size is inversely proportional
to temperature and aridity, as it increases with precipitation, without observing an effect of
latitude or altitude. Alternatively, Gérard et al. [10] show a positive relationship between
body size and latitude in different species of bees, but they suggest that this differentiation
seems to be associated with social behavior, flight behavior and the nesting strategy of
the different species, as also reported in beetles that follow the converse Bergmann’s rule.
Sanzana et al. [20] reported another species following the converse Bergmann’s rule. The
butterfly species Auca coctei presents a negative relationship between the size of the wings
of the females and latitude, and the same pattern is not reported in the males of the same
species, which could give evidence of sexual selective pressures not necessarily related to
temperature. Similarly, Pallares et al. [23] found an unclear pattern in the latitudinal size
variation between different lineages of water beetles of the Dytiscidae family, observing an
effect related to the habitat preference at the interspecific level. In addition, a remarkable
case is that of the dragonfly species Nannophya koreana (Odonata: Libellulidae), where it
was observed that there is a negative relationship between body size and temperature on a
scale of 120 km, and it was emphasized that this variation is related to the temperature of
the water where the larvae of the species develop [61].

It should be noted that although our results show that C. chilensis presents a pattern
apparently concordant with the converse Bergmann’s rule, these results should be treated
with caution, since Bergmann’s rule is a pattern associated with thermoregulation, and
its applicability in ectotherms has been widely questioned [7]. On the other hand, these
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results could be related to unknown ecological factors associated with an environmental
gradient, without necessarily having a simple causal relationship. This work provides new
evidence for a pattern of body size variation in a latitudinal context, suggesting that C.
chilensis is a good model species for studying the mechanisms underlying size variation in
an ecological context.
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