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1 Introduction

Since the seminal works of Bekenstein and Hawking [1, 2], black holes are believed to behave

as thermodynamic objects with characteristic temperature and entropy. A natural question

has then emerged concerning the statistical interpretation of the black hole entropy. One

of the first results that has shed some light on this problem was the observation that

the asymptotic symmetries of the three-dimensional AdS space consist in two copies of

the Virasoro algebra with a central charge [3]. This latter corresponds to the symmetry

group of a two-dimensional CFT and, in this case, the Cardy formula is well-appropriate to

express the asymptotic density of states [4]. An important manifestation of the AdS/CFT

correspondence was then provided by showing that the Cardy formula applied for the BTZ

black hole [5] correctly reproduces the expression of the Bekenstein-Hawking entropy [6].

Soon after, this approach was generalized for higher-dimensional black holes having a two-

dimensional CFT dual in the case of standard General Relativity [7] as well as in presence

of higher-derivative corrections [8].

Extensions of the Cardy formula have been considered and studied in the current

literature. Among other, one can mention the higher-dimensional generalization of the

Cardy formula which applied for strongly coupled field theories having an AdS dual [9].

There also exist extensions of the Cardy formula with applications for three-dimensional

spacetimes that are not AdS like the warped AdS spaces [10] or anisotropic spacetimes,
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namely the Lifshitz spacetimes [11] or the hyperscaling violation geometries [12–14]. The

interest on anisotropic spacetimes has considerably grown up this last decade essentially

due to the will of extending the ideas underlying the gauge/gravity duality to strongly

coupled field theories with an anisotropic scaling symmetry [15]. Notice also that the cases

of three-dimensional black holes have permitted a better comprehension of the holographic

derivation of the entropy by highlighting the prominent role played by the soliton, see

refs. [16–18]. This observation is not in contradiction with the standard derivation of the

Cardy formula for which the ground state is implicitly assumed to be the three-dimensional

AdS spacetime. Nevertheless, this assumption is in general valid only for the vacuum sector

but not in the hairy sector which possesses a different ground state. It is then more judicious

to deal with a Cardy formula written in terms of the vacuum energy rather than the central

charges. Unfortunately, it is not possible a priori to find out the vacuum energy of the

putative field theory. However, as stressed in refs. [16–18], the vacuum energy can be

identified with the mass of a bulk soliton constructed from the black hole through a double

Wick rotation in the same way that the AdS soliton [19], which reinforces the importance of

the role played by the soliton. Importance also confirmed in the Lifshitz case [11] where the

robustness of the Lifshitz Cardy formula has been tested successfully for three-dimensional

Lifshitz black holes with a nonminimally scalar field [20].

One of the aim of this paper is precisely to confirm the importance of the gravitational

soliton. We will highlight this importance in the case of rotating black holes in arbitrary

dimension D with a planar base manifold. This restriction on the horizon’s topology is

justified by the fact that the soliton can be easily constructed from the black hole by a

double analytic continuation similar to the one operated in the AdS soliton [19]. With

the view of achieving this task, we will be interested on higher-dimensional extensions

of the Cardy formula for field theories satisfying the following two assumptions: (i) the

field theory possibly displays a hyperscaling violation reflected by the fact that the thermal

entropy S scales with respect to the temperature as S ∼ T
deff
z , and (ii) the ground state for

the field theory is identified with a bulk soliton which is regular everywhere and devoid of

any integration constant. Here, deff is an effective spatial dimensionality for the dual theory

(related to the dimension of the stress-energy tensor) which measures the possible deviation

from the spatial dimension and z is the Lifshitz dynamical exponent. In the standard AdS

situation, the “effective” spatial dimension deff = D−2 and the dynamical exponent z = 1.

Under these hypothesis, formulas for the asymptotic growth of the number of states have

been obtained in the non-rotating case in [12–14], and their spinning generalizations in the

isotropic case z = 1 were found in [21]. In the present work, we extend this formula for a

generic dynamical exponent z. The resulting Cardy-like formula makes no mention to any

central charge but instead involves the mass of the ground state which is identified with

the nonrotating gravitational soliton. Nevertheless, since a very little is known about the

putative field theories, we propose to corroborate the validity of the Cardy-like formula

considering gravity theories whose spectrum of solutions contain black holes whose entropy

exhibits a power law temperature as described in the hypothesis (i) as well as regular

solitons (ii). This inspection will be done for different classes of black hole solutions with

different asymptotic behaviors (rotating AdS, Lifshitz and hyperscaling violation black
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holes with a planar base manifold) by comparing the gravitational entropy with the entropy

field expression involving the effective spatial dimension and the vacuum energy. In all our

examples, the spinning planar black holes are derived from static configurations through a

Lorentz boost and the vacuum energy corresponds to the mass of the gravitational soliton

obtained from the nonrotating black hole through a double Wick rotation. We will also

extend these results to the case of charged planar black holes, where again the ground state

is identified with the soliton derived from the neutral and nonrotating black hole. Since the

soliton is devoid of any integration constant, its mass will be computed using the quasilocal

generalization of the ADT formalism [22–26] as presented in refs. [27, 28]. One of the main

result of these two last papers lies in the prescription of the off-shell ADT potential Qµν
ADT

in terms of the off-shell Noether potential Kµν and the surface term Θµ arising from the

variation of the action √−gQµν
ADT =

1

2
δKµν − ξ[µΘν], (1.1)

where ξµ denotes the Killing vector. The corresponding conserved charge is computed to be

Q(ξ) =

∫
dD−2xµν

(
∆Kµν(ξ)− 2ξ[µ

∫ 1

0
ds Θν](ξ|s)

)
, (1.2)

where ∆Kµν(ξ) ≡ Kµν
s=1(ξ) −Kµν

s=0(ξ) denotes the difference of the Noether potential be-

tween the black hole and the zero-mass solution, and dD−2xµν represents the integration

over the co-dimension two boundary. For the examples treated in this paper, the action

can schematically be written as

S =

∫
dDx

√−gL(g, φ,A(i)),

where φ is a scalar field (possibly a dilatonic field) with its usual kinetic term and A(i) =

A(i)µdx
µ stand for Abelian gauge fields or Proca fields. In this generic case, the boundary

term and Noether potential needed to compute the charge (1.2) are given by

Θµ = 2
√−g

[
Pµ(αβ)γ∇γδgαβ− δgαβ∇γP

µ(αβ)γ+
1

2

∑

i

(
∂L

∂(∂µA(i)ν)
δA(i)ν

)
+
1

2

∂L
∂
(
∂µφ

)δφ
]
,

Kµν =
√−g

[
2Pµνρσ∇ρξσ − 4ξσ∇ρP

µνρσ −
∑

i

∂L
∂
(
∂µA(i)ν

)ξσA(i)σ

]
, (1.3)

where Pµνρσ = ∂L
∂Rµνρσ

, and Rµνρσ is the Riemann tensor.

The plan of the paper is organized as follows. In the next section, a general formula

for the asymptotic growth of the number of states including the angular momentum is

proposed. This generic Cardy-like formula involves the effective spatial dimension deff , the

Lifshitz dynamical exponent z, the mass and angular momentum of the black hole as well

as the vacuum energy which corresponds to the mass of the bulk soliton. In section 3, we

corroborate the validity of the Cardy-like formula in the isotropic case z = 1 with stationary

cylindrical black holes. The case of a three-dimensional black hole solution of the Einstein

equations with a source given by a self-interacting scalar field with a super-renormalizable

potential is also treated in full details. Lovelock AdS black holes will also be inspected in
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order to reinforce the validity of the Cardy-like formula. To end the section 3, two examples

of hyperscaling violating black holes with different effective spatial dimensionality will be

studied. In section 4, we will deal with the anisotropic case z 6= 1. Lifshitz black holes

solutions of higher-order gravity theories will be our first testing example while the case

of charged anisotropic black holes produced by various dilaton fields will constitute our

second class of example. Finally, the last section is devoted to the summary and to the

concluding remarks. For simplicity, we have decided to fix the radius of curvature to unit,

l = 1, while the Newton gravitational constant G is defined through the change 2κ = 16πG.

2 General formula for the asymptotic growth of the number of states

As recalled in the introduction, the asymptotic symmetries of AdS3 are represented by two

copies of the Virasoro algebra with equal left and right moving central charges

c+ = c− = c =
3l

2G
=

12π

κ
,

(in our convention l = 1 and 2κ = 16πG), and the standard Cardy formula takes the

following form

S = 2π

√
c

6
∆̃+ + 2π

√
c

6
∆̃−, (2.1)

where ∆̃± = 1
2(M ± J) are the eigenvalues of the left and right Virasoro operators. In

this representation of the Cardy formula, it is implicitly assumed that the ground state

is identified with the AdS spacetime. Nevertheless, the AdS spacetime is only a suitable

ground state in the case of standard General Relativity, and this assumption is not longer

valid in presence of source for example. Hence, it is more reasonable to deal with a Cardy

formula involving the vacuum charge than the central charge. In the vacuum sector for

standard General Relativity, the ground state is nothing but the three-dimensional AdS

soliton whose mass is computed below (3.9) and gives Msol = −π/κ. Finally, the standard

Cardy formula (2.1) can be as well expressed as

S = 4π

√
−1

2
Msol

√
∆̃− + 4π

√
−1

2
Msol

√
∆̃+. (2.2)

Notice that Cardy-like formulas involving the vacuum energy instead of the central charges

have been proved to be very useful for examples where the ground state is not the three-

dimensional AdS spacetime, see e.g. [11–14, 16–18]. The matching between the gravita-

tional entropy and the Cardy formula (2.2) is perfectly consolidated for three-dimensional

black holes that are asymptotically AdS (even in the weaker sense). Nevertheless, as men-

tioned in the introduction, we are interested on generalizations of the Cardy formula that

apply for field theories displaying an hyperscaling violation behavior such that the thermal

entropy S scales w.r.t. the temperature T as

S ∼ T
deff
z ,
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where deff is an effective spatial dimensionality and z is the Lifshitz exponent. In order

to achieve this task, we closely follow the derivations done in refs. [12, 21]. The partition

function Z defined on the torus of modulus τ such that 2πτ = 2πr eiφ and 2πτ̄ = 2πr e−iφ

can be written as

Z[τ, τ̄ ] = Tr
[
e2πiτL0e−2πiτ̄ L̄0

]
,

with L0 + L̄0 = M and L0 − L̄0 = J . The density of states ρ(M,J) can be obtained by

taking an inverse Laplace transform yielding

ρ(M,J) =

∫
dr dφZ[r, φ] exp

[
− 2πireiφL0 + 2πire−iφL̄0

]
. (2.3)

In the microcanonical ensemble, the entropy is basically the logarithm of the density of

states S ∼ log ρ(M,J). Defining the quantity

Z0[r, φ] = Tr

{
exp

[
2πireiφ

(
L0 −

Msol

2

)
− 2πire−iφ

(
L̄0 −

Msol

2

)]}
,

and assuming that Z0 presents the following modular invariance

Z0

[
− 1

r
deff
z

,−φ

]
= Z0[r, φ],

the density of states ρ(M,J) can be re-written as

ρ(M,J)=

∫
dr dφZ0

[
− 1

r
deff
z

,−φ

]
exp

[
−πiMsol

r
deff
z

e−iφ+
πiMsol

r
deff
z

eiφ−2πireiφL0+2πire−iφL̄0

]
.

Now, as usual, this last expression can be evaluated using a saddle-point approximations

for r and φ, and assuming that Z0 varies slowly, one gets

S = π

√
deff + z

z

[
(−2Msol)

z 1

ddeffeff

] 1
z+deff

(√
(deff + z)2M2 − 4deffzJ2 + (deff + z)M

) 1
2

×
(√

(deff + z)2M2 − 4deffzJ2 − (deff − z)M

) deff−z

2(deff+z)

. (2.4)

This formula constitutes the extension of the Cardy formula (2.2) in arbitrary dimension

for a field theory with a spatial effective dimension deff and dynamical exponent z.

Let us see the consistency of this expression with known formulas. First of all, in the

isotropic case z = 1, the expression (2.4) is compatible with the Cardy formula (2.2) in

the standard AdS case in three dimensions (which corresponds to deff = 1) as well as with

the formula derived in [21] for hyperscaling violation metric. On the other hand, in the

non-rotating case with anisotropy, i.e. J = 0 with z 6= 1, the formula (2.4) reproduces the

Lifshitz Cardy formula in three dimensions with deff = 1, see [11], and also the generic

formula for hyperscaling violation metric [12–14].

– 5 –



J
H
E
P
0
4
(
2
0
1
7
)
0
9
2

In the electrically charged case, the Cardy-like formula (2.4) becomes

S = π

√
deff + z

z

[
(−2Msol)

z 1

ddeffeff

] 1
z+deff

×



√

(deff + z)2
(
M − 1

2
φeQe

)2

− 4deffzJ2 + (deff + z)

(
M − 1

2
φeQe

)


1
2

(2.5)

×



√

(deff + z)2
(
M − 1

2
φeQe

)2

− 4deffzJ2 − (deff − z)

(
M − 1

2
φeQe

)


deff−z

2(deff+z)

,

where φe denotes the electric potential while Qe stands for the electric charge.

3 Corroborating the Cardy-like formula in the isotropic case, z = 1

In this section, we will be mainly concerned with planar black holes that are asymptotically

AdS or exhibiting an hyperscaling violation behavior. In these cases, the asymptotic form

of the metric can be parameterized as follows

ds2 =
1

r
2θ

D−2

[
− r2dt2 +

dr2

r2
+ r2

D−2∑

i=1

dx2i

]
, (3.1)

where θ represents the parameter responsible of the violation of the hyperscaling property,

and θ = 0 will correspond to the planar AdS case. Note that, for the asymptotic met-

ric (3.1), the isotropic transformations t → λt, r → λ−1r and xi → λxi are identified as an

isometry in the AdS case, and as a conformal transformation for non vanishing θ.

For this class of black holes, the dynamical exponent appearing in the Cardy-like for-

mula (2.4) corresponds to the isotropic situation z = 1 while the effective spatial dimension

deff is given by deff = D − 2 in the AdS case (θ = 0) otherwise it will depend explicitly

on the violating parameter θ. In the hyperscaling case, one of the difficulty is to correctly

identify the functional dependence of the effective spatial dimension. For example, for

Einstein gravity with scalar field source, the effective spatial dimension is deff = D− 2− θ,

while for higher-order gravity theories, this dependence may be different as shown below,

see also [13, 14].

In what follows, we will treat various isotropic examples with the aim of testing the

Cardy-like formula, starting from AdS planar black holes. As a first example, we exam-

ine D−dimensional stationary cylindrical black holes solutions of Einstein gravity with a

negative cosmological constant. We also look at the case of a three-dimensional solution

of Einstein gravity with a self-interacting scalar field with a super-renormalizable poten-

tial. The case of higher theories is also inspected through the analysis of Lovelock AdS

black holes. In the second part, two examples of hyperscaling violation black holes will be

studied. The first testing example is described by the Einstein gravity with a scalar field

source corresponding to a spatial dimensionality deff = D − 2 − θ. Next, in order to test

the force of the Cardy-like formula with a different spatial dimensionality, we deal with an

hyperscaling violating black hole solution of a pure quadratic gravity theory.
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3.1 Stationary cylindrical black holes

We start the corroborating study of the Cardy-like formula (2.4) with the case of the

Einstein field equations in the presence of a negative cosmological constant

Gµν −
(D − 1)(D − 2)

2
gµν = 0,

and whose corresponding action is

S[g] =
1

2κ

∫
dDx

√−g
(
R+ (D − 1)(D − 2)

)
. (3.2)

We consider the higher-dimensional extension of the stationary cylindrical black hole found

by Lemos [29] in four dimensions and reported in [30],

ds2 = −F (r)

(
Ξ dt−

n∑

i=1

ai dφi

)2

+ r2
n∑

i=1

(ai dt− Ξ dφi)
2 +

dr2

F (r)

−r2
n∑

i<j

(ai dφj − aj dφi)
2 + r2

D−2−n∑

i=1

dx2i . (3.3)

Here n = [(D−1)/2] corresponds to the number of rotation parameters ai, Ξ =
√
1+

∑n
i a

2
i ,

and the metric function reads

F (r) = r2
(
1−

(rh
r

)D−1 )
.

In four dimensions, the number of rotations is n = 1, and the solution reduces to the

stationary cylindrical black hole solution of Lemos [29].

As calculated in ref. [30], the entropy of the solution is

S =
2πVol(ΣD−2)Ξr

D−2
h

κ
, (3.4)

with mass and angular momenta given by

M =
Vol(ΣD−2)

2κ

(
(D − 1)Ξ2 − 1

)
rD−1
h , Ji =

(D − 1)Vol(ΣD−2)

2κ
Ξ ai r

D−1
h , (3.5)

where Vol(ΣD−2) corresponds to the volume element of the (D − 2)-dimensional Eu-

clidean space.

In order to test the validity of the Cardy-like formula (2.4), one needs to construct

the static soliton and to compute its mass through the quasilocal expression (1.2). As

explained in the introduction, operating a double Wick rotation on the static version of

the solution, that is eq. (3.3) with ai = 0, one gets the AdS soliton [19]

ds2 = −r2 dt2 +
dr2

f(r)
+ f(r) dϕ2 + r2

D−3∑

i=1

dx2i , (3.6)

– 7 –
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with

f(r) = r2

[
1−

(
2

(D − 1)r

)D−1
]
. (3.7)

The next step is to determine the mass of the soliton through the quasilocal formula (1.2)

where the Killing vector field is ξt = ∂t. The variation of the Noether potential and the

surface term are given by

∫ 1

0
dsΘr =

1

2κ

(
2

D − 1

)D−1

, ∆Krt(ξt) = −1

κ

(
2

D − 1

)D−1

. (3.8)

Finally, the mass of the D−dimensional AdS gravitational soliton reads

Msol = −Vol(ΣD−2)

2κ

(
2

D − 1

)D−1

, (3.9)

and it is simple to check that the formula (2.4) where J2 is now understood as J2 =
∑n

i=1 J
2
i

and where deff = D − 2 and z = 1 correctly reproduces the gravitational entropy (3.4).

3.2 Black hole with a super-renormalizable self-interacting scalar field in 3D

We pursue our survey considering now a three-dimensional toy model whose action is

described by the Einstein-Hilbert piece with a cosmological constant together with a non-

minimally self-interacting scalar field

S[g, φ] =

∫
d3x

√−g

(
R− 2Λ

2κ
− 1

2
∇µφ∇µφ− 1

16
Rφ2 − U(φ)

)
. (3.10)

The nonminimal coupling corresponds to the conformal one in three dimensions, and as it

is well known the potential term which is compatible with the conformal invariance of the

matter source is U(φ) ∝ φ6. Nevertheless, in our case, we chose a potential term breaking

the conformal invariance of the matter action, and defined by all the powers lower than

the conformal one (super-renormalizable potential), that is

U(φ) = λ1 φ+ λ2 φ
2 + λ3 φ

3 + λ4 φ
4 + λ5 φ

5 + λ6 φ
6. (3.11)

The field equations obtained from the variation of the action (3.10) with respect to the

metric and the scalar field are

Gµν + Λgµν = κ

(
∇µφ∇νφ− gµν

(
1

2
∇σφ∇σφ+ U

)
+

1

8
(gµν�−∇µ∇ν +Gµν)φ

2

)
,

�φ− 1

8
Rφ =

dU

dφ
. (3.12)

In ref. [32], the authors have derived a static black hole solution of the model described

by (3.10)–(3.11)–(3.12) using a conformal machinery where the coupling constants are

– 8 –
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parameterized as follows

λ1 =

[
(µ− 3)2 (4µ− 3)λ4 + 27 (µ− 1)2

]
λ
√
2

18
√
κ (µ− 1)2 (1− λ2)5

,

λ2 = −5λ2
[
λ2 (4µ− 3) (µ− 3)2 + 27 (µ− 1)2

]

72 (µ− 1)2 (1− λ2)5
,

λ3 =
5
√
2κµ3λ3

54 (µ− 1)2 (1− λ2)5
, λ4 = −5κλ2

[
(4µ− 3) (µ− 3)2 + 27 (µ− 1)2 λ2

]

576 (µ− 1)2 (1− λ2)5
,

λ5 =

[
27 (µ− 1)2 λ4 + (4µ− 3) (µ− 3)2

]√
2λκ3/2

1152 (µ− 1)2 (1− λ2)5
, (3.13)

λ6 = −κ2
[
27 (µ− 1)2 λ6 + (4µ− 3) (µ− 3)2

]

13824 (µ− 1)2 (1− λ2)5
,

Λ = −
[
27 (µ− 1)2 + λ6 (4µ− 3) (µ− 3)2

]

27 (µ− 1)2 (1− λ2)5
.

More precisely, as shown in [32], the action defined by (3.10)–(3.11)–(3.13) can be ob-

tained from the conformally invariant action1 denoted by S̃[g̃, φ̃] and corresponding to the

action (3.10) with the potential U ∝ φ̃6 through a map parameterized by the factor λ, and

both actions are related as follows

S[g, φ] = (1− λ2) S̃[g̃, φ̃]. (3.14)

In fact, the static solution reported in [32] was constructed using the one-parameter map-

ping with a seed configuration given by the solution of the conformally self-interacting

version of the Martinez-Zanelli solution [33] found in [34]. Instead of writing down the

static solution [32], we report its spinning extension obtained from the static configuration

as usual in three dimensions through a Lorentz boost defined by

t → 1√
1− ω2

(t+ ω ϕ), ϕ → 1√
1− ω2

(ϕ+ ωt), (3.15)

and well-defined for ω2 < 1. The line element of the resulting rotating solution is given by

ds2 = H2(r)

{
−N2(r)F (r)dt2 +

dr2

F (r)
+R2(r) (dϕ+Nϕ(r)dt)2

}
, (3.16)

where the metric functions and the scalar field read

N2(r) = r2
(
1− ω2

)

(r2 − ω2F (r))
, R2(r) =

1

(1− ω2)

(
r2 − ω2F (r)

)
, Nϕ(r) =

ω
(
r2 − F (r)

)
(
r2 − ω2F (r)

) ,

φ(r) =

√
2

κH(r)

[√
12 (µ− 1) rh(

3 (µ− 1) rh − 2 rµ
) + 2λ

]
, (3.17)

F (r) = r2

[
1 + (µ− 1)

(rh
r

)3
− µ

(rh
r

)2
]
, H(r) =

[
λ

√
3 (µ− 1) rh(

3 (µ− 1) rh − 2 rµ
) + 1

]2

.

1There is a slight abuse of language in the sense that “by conformally invariant action”, we mean that

only the matter source involving the scalar field is invariant under the conformal transformations and not

the gravity action.
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We now analyze the thermodynamical properties of the spinning solution through the

Euclidean method where the Euclidean time τ is imaginary τ = it and periodic of period

β which is the inverse of the temperature β = T−1. The Euclidean action IEuc is related

with the free energy F by

IEuc = β F = β (M − TS − ΩJ) , (3.18)

where M is the mass, S the entropy and Ω is the chemical potential corresponding to the

angular momentum J . On the other hand, in order to display the boundary term B that

will ensure the finiteness of the Euclidean action, we find more convenient to consider the

following class of Euclidean metric

ds2 = H2(r)

{
N2(r)F (r)dτ2 +

dr2

F (r)
+R2(r) (dϕ+ iNϕ(r)dτ)2

}
,

with the assumption that the scalar field only depends on the radial coordinate, φ = φ(r).

The Euclidean time τ ∈ [0, β] and the radial coordinate r ∈ [rh,∞[ where rh is the location

of the horizon and ϕ ∈ [0, 2π[. The reduced action principle reads

IEuc = 2πβ

∫ (
N(r)H(r) +Nϕ(r)p(r)′

)
dr +B, (3.19)

where

p(r) =
1

16

H(r)R3(r)(8− φ(r)2κ)Nϕ(r)′

N(r)κ
, (3.20)

and the Hamiltonian H is given by

H =
8− κφ2

8κ

[
RFH

′′
+HFR

′′ − RFH
′2

H
+

1

2
F

′
R

′
H +H

′
(
1

2
F

′
R+R

′
F

)]

−1

4
HFRφφ

′′
+

1

4
HFRφ

′2 − 1

4

(
1

2
F

′
R+ FR

′
)
Hφφ

′
+

H3R(Λ + κU(φ))

κ

− 24κ p2

HR3(κφ2 − 8)
.

In the reduced action (3.19), B is a boundary term that is fixed by requiring that the

Euclidean action has an extremum, that is δIE = 0; this last condition in turn implies that

δB = −2πβ

[(
8−κφ2

8κ

{
1

2
H

′
RN +

1

2
HR

′
N

}
− 1

8
HRNφφ

′
)
δF+

(
8−κφ2

8κ
RFN

)
δH

′
+

+

(
8−κφ2

8κ

{
−2

H
′
RFN

H
− 1

2
RNF

′ −RFN
′

}
+
1

4
RFNφφ

′

)
δH+

(
8−κφ2

8κ
HFN

)
δR

′

−
(
8−κφ2

8κ
H

{
1

2
F

′
N+FN

′
})

δR−
(
1

4
HFRNφ

)
δφ

′
+

(
3

4
HFRNφ

′
+

1

8
HF

′
RNφ

+
1

4
HFRN

′
φ+

1

4
H

′
FRNφ

)
δφ+Nϕδp

]r=∞

r=rh

,
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where the variation is taken between the horizon and the infinity. The temperature is fixed

requiring regularity of the metric at the horizon yielding to

β(N(r)F
′
(r))|rh = 4π,

and for the solution (3.17), one obtains

T =
(3− µ)rh

√
1− ω2

4π
. (3.21)

We do not display the field equations of the reduced action (3.19) but their full integration

will reproduce the solution (3.17) with

p = −ωµ(1− λ2)

κ(1− ω2)
r2h.

We are now in position to compute the boundary term. Its contribution at the infinity gives

δB
∣∣
∞ =

2πβµ(1 + ω2)(1− λ2)rh
κ(1− ω2)

δrh =⇒ B
∣∣
∞ = β

πµ(1 + ω2)(1− λ2)

κ(1− ω2)
r2h,

while at the horizon, one gets

δB
∣∣
rh

= −2πβ

[
4π(1− λ2)µ√

1− ω2(µ− 3)κβ
δrh +Nϕ(rh) δp

]
,

and since Ω = Nϕ(∞)−Nϕ(rh) = −ω, we obtain

B
∣∣
rh

=
8π2(1− λ2)µ√
1− ω2(3− µ)κ

rh + 2πβΩp. (3.22)

Finally, the boundary term is given by

B = B
∣∣
∞ −B

∣∣
rh

= β
πµ(1 + ω2)(1− λ2)

κ(1− ω2)
r2h −

8π2(1− λ2)µ√
1− ω2(3− µ)κ

rh − 2πβΩp, (3.23)

and hence the comparison between (3.23) and (3.18) permits the identification of the en-

tropy

S =
8µπ2rh

(
1− λ2

)

κ (3− µ)
√
1− ω2

, (3.24)

as well as the mass, angular momentum and angular velocity that are given by

M =
µπ(1 + ω2)(1− λ2)

κ (1− ω2)
r2h, J = −2πµω(1− λ2)

κ (1− ω2)
r2h, Ω = −ω. (3.25)

It is interesting to note that the values of the entropy, the mass and the angular momentum

of the black hole solution with the super-renormalizable potential are precisely (1 − λ2)

time those of the black hole solution with the conformal potential [33, 34]. This is not
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surprising and can be explained as follows. On one hand, the actions being proportional

with that precise factor (3.14), so that their Euclidean actions

IEuc = (1− λ2)ĨEuc.

On the other hand, since the temperatures and the chemical potentials are the same for

both solution, T = T̃ and Ω = Ω̃, we have by virtue of (3.18)

IEuc = β (M − TS − ΩJ) = (1− λ2)ĨEuc = (1− λ2)β
(
M̃ − T S̃ − ΩJ̃

)
.

For completeness, we also notice that the first law of thermodynamics is satisfied

dM = TdS − ω dJ. (3.26)

Once again, in order to display the role played by the gravitational soliton for computing

the entropy, we construct the gravitational soliton and derive its mass. The soliton obtained

from the static black hole configuration, eqs. (3.16)–(3.17) with ω = 0, through a double

Wick rotation reads

ds2 = −r2 h2(r)dt2 +
h2(r) dr2

r2f(r)
+ r2f(r)h2(r)dϕ2, (3.27)

with

f(r)=1+(µ−1)

[
2

(3− µ) r

]3
−µ

[
2

(3−µ) r

]2
, h(r)=

[
λ

√
3 (µ− 1)(

3 (µ−1)− rµ (3−µ)
) + 1

]2

.

For a Killing vector ξt = (1, 0, 0), the surface term and the variation of the Noether

potential read

∫ 1

0
dsΘr = (1− λ2)

[
− 8µ2r

9 (3− µ)κ (µ− 1)
+

µ2 (4µ− 3) (µ− 3)4 r4

27 (µ− 1)2
(
3 (µ− 1) + rµ (µ− 3)

)2
κ

− (4µ− 3) (µ− 3)2 r2

27 (µ− 1)2 κ
− 2µ

(3− µ)2 κ

]
,

∆Krt(ξt) = (1− λ2)

[
8µ2r

9 (3− µ)κ (µ− 1)
− µ2 (4µ− 3) (µ− 3)4 r4

27 (µ− 1)2
(
3 (µ− 1) + rµ (µ− 3)

)2
κ

+
(4µ− 3) (µ− 3)2 r2

27 (µ− 1)2 κ

]
,

yielding to a mass of the soliton (1.2) given by

Msol = −4πµ(1− λ2)

(3− µ)2κ
. (3.28)

Finally, it is easy to check that the formula of the gravitational entropy (3.24) is correctly

reproduced by means of the Cardy-like formula (2.4) using the conserved quantities (3.25)

and the mass of the gravitational soliton (3.28).
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3.3 Lovelock AdS black holes

In General Relativity, two of the main fundamental assumptions are the requirement of

general covariance and the fact that the field equations for the metric are at most of

second order. In three and four dimensions, these requirements automatically single out the

gravity theory to be described by the Einstein-Hilbert action plus eventually a cosmological

constant. However, for dimensions greater than four, a more general gravity theory, the

so-called Lovelock theory, satisfies these standard requirements [35]. The D−dimensional

Lovelock Lagrangian is a D−form constructed out of the vielbein, the spin connection and

their exterior derivative and is given by

[D/2]∑

p=0

αp ǫa1···aDR
a1a2 · · ·Ra2p−1a2pea2p+1 · · · eaD ,

where Rab = dωab + ωa
c ω

cb is the curvature two-form, the coefficients αp are arbitrary

dimensionful coupling constants and the wedge product between differential forms is un-

derstood. We recognize the first two terms of the Lovelock Lagrangian to be proportional to

the cosmological constant and to the Einstein-Hilbert piece. Being D−dimensional forms,

the Lovelock actions are automatically invariant under the local Lorentz transformations.

In addition, in odd dimension, this Lorentz gauge symmetry can be enlarged for a particu-

lar choice of the coefficients αp to a local (A)dS or Poincaré symmetry group; the resulting

Lagrangians are called Chern-Simons, see e. g. [36] for a review on Chern-Simons theory.

As shown in [37], the coefficients αp can also be chosen such that the theory has a unique

AdS vacuum with a fixed value of the cosmological constant. In doing so, one yields to

a series of inequivalent actions indexed by an integer n with 1 ≤ n ≤ [(D − 1)/2], and

given by

Sn = − 1

2κn(D − 3)!

∫ n∑

p=0

Cn
p

(D − 2p)
ǫa1···aDR

a1a2 · · ·Ra2p−1a2pea2p+1 · · · eaD , (3.29)

or in tensorial form by

Sn =
1

2κ

∫
dDx

√−g

[
R+

(D − 1)(D − 2)

n
+

(n− 1)

2(D − 3)(D − 4)
LGB

+
(n− 1)(n− 2)

3!(D − 3)(D − 4)(D − 5)(D − 6)
L(3) + · · ·

]
,

where LGB = R2 − 4RαβR
αβ + RµναβR

µναβ stands for the Gauss-Bonnet Lagrangian and

L(3) is given by

L(3) = R3 − 12RRµνR
µν + 16RµνR

µ
ρR

νρ + 24RµνRρσR
µρνσ + 3RRµνρσR

µνρσ

−24RµνR
µ
ρσκR

νρσκ + 4RµνρσR
µνηζRρσ

ηζ − 8RµρνσR
µ ν
η ζR

ρησζ .

Using differential forms, the field equations arising from the variation of the action (3.29)

with respect to the vielbein and the spin connection read

ǫaa2···aDR̄
a2a3 · · · R̄a2n−1a2nea2n+1 · · · eaD = 0, (3.30a)

ǫaba3···aDR̄
a3a4 · · · R̄a2n−1a2nT 2n+1ea2n+2 · · · eaD = 0, (3.30b)
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where R̄ab = Rab + eaeb and T a is the torsion 2−form T a = dea + ωa
b e

b. The spectrum of

solutions of Lovelock and Chern-Simons gravity theories contain (topological) AdS black

holes with interesting thermodynamical properties, see e.g. [37–42].

We now construct the spinning extension of the black hole solution of the field equa-

tions (3.30) found in [41] with planar base manifold. Its line element is given by

ds2 = −N2(r)dt2 +
dr2

F (r)
+R2(r) (dϕ+Nϕ(r)dt)2 + r2

D−3∑

i=1

dx2i , (3.31)

with

N2(r) = r2F (r)
(
1− ω2

) (
r2 − F (r)ω2

)−1
, Nϕ(r) = ω

(
r2 − F (r)

) (
r2 − F (r)ω2

)−1
,

R2(r) =
1

(1− ω2)

(
r2 − F (r)ω2

)
, F (r) = r2

(
1−

(rh
r

)D−1
n

)
. (3.32)

Skipping the details, the entropy together with the Hawking temperature read

S =
2πrD−2

h Vol(ΣD−2)

κ
√
1− ω2

, T =
(D − 1)rh

√
1− ω2

4πn
, (3.33)

while the mass and angular momentum are given by

M =

(
D − 2 + ω2

2κ

)
Vol(ΣD−2)r

D−1
h

n(1− ω2)
, J = −

(
D − 1

2κ

)
ωVol(ΣD−2)r

D−1
h

n(1− ω2)
, (3.34)

and we easily check that the first law holds.

On the other hand, the corresponding soliton derived from the static black hole solution

with a double analytic continuation is

ds2 = −r2dt2 +
1

r2
dr2

f(r)
+ r2 f(r) dϕ2 + r2

D−3∑

i=1

dx2i , f(r) = 1−
[

2n

(D − 1)r

]D−1
n

,

and the mass of the soliton is computed to be

Msol = −Vol(ΣD−2)

κ(D − 1)

(
2n

D − 1

)D−2

. (3.35)

Finally, the gravitational expression of the entropy (3.33) matches perfectly with the Cardy-

like formula (2.4) with deff = D−2 and with the conserved quantities (3.34)–(3.35). Notice

that this matching is far from trivial and deserves a certain attention for the following

reason. As said in the introduction, there exists higher-dimensional extension of the Cardy

formula that applied for field theory having an AdS dual, the so-called Cardy-Verlinde

formula [9]. Nevertheless, as stressed in [43], the Cardy-Verlinde formula fails in general

for the Lovelock AdS black holes independently of the topology of the base manifold.
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3.4 Hyperscaling violation black hole in D dimensions

Up to now, we have only considered cases where the violating exponent is vanishing, θ = 0.

Nevertheless, hyperscaling violation black holes are also known in the current literature, see

e.g. [44–47]. It is conjectured that these solutions may have a certain interest in holographic

contexts related to condensed matter physics, see e.g. [48] and [49]. For example, solutions

with an hyperscaling violation exponent θ = D− 3 can be useful to describe a dual theory

with an O(N2) Fermi surface (N being the number of degrees of freedom).

Hyperscaling violation black holes can also be an excellent set-up to test the robustness

of the Cardy-like formula (2.4) since in this case the effective spatial dimension deff is not

longer equal to D− 2 but will instead depend on the exponent θ. A toy model in order to

achieve this task is given by the Einstein-Hilbert action with a self-interacting scalar field

S[g, φ] =

∫
dDx

√−g

[
R

2κ
− 1

2
∇µφ∇µφ− U(φ)

]
, (3.36)

whose field equations read

Gµν = κ

[
∇µφ∇νφ− gµν

(
1

2
∇σφ∇σφ+ U

)]
, �φ =

dU

dφ
. (3.37)

Indeed, for a Liouville potential of the form

U(φ) = −(D − 2− θ) (D − 1− θ)

2κ
e

√
4κθ φ√

(θ−D+2)(D−2) , (3.38)

a static hyperscaling violation black hole was found in [50] with a generic value of the

exponent θ, and whose effective spatial dimension is deff = D − 2− θ.

As done previously, we construct the spinning extension of the solution [50] that reads

ds2 =
1

r
2θ

D−2

[
−N2(r)dt2 +

dr2

F (r)
+R2(r) (dϕ+Nϕ(r)dt)2 + r2

D−3∑

i=1

dx2i

]
, (3.39)

where

N2(r) = r2
(
1− ω2

)
F (r)

(
r2 − F (r)ω2

)−1
, R2(r) =

1

1− ω2

(
r2 − F (r)ω2

)
,

Nϕ(r) = ω

(
r2 − F (r)

)

(r2 − ω2F (r))
, F (r) = r2

(
1−

(rh
r

)D−1−θ )
, φ(r) =

√
θ (θ −D + 2)

κ(D − 2)
ln(r).

Since the thermodynamics analysis is quite similar to the case of the scalar field with

a super-renormalizable potential, we only sketch briefly the quantities of interest as the

entropy and temperature of the solution

S =
2πVol(ΣD−2)

κ
√
1− ω2

rD−2−θ
h , T =

rh(D − 1− θ)
√
1− ω2

4π
, (3.40)

and hence the effective spatial dimensionality deff = D − 2 − θ. The mass and angular

momentum of the solution are given by

M =

(
ω2+D−2−θ

)
Vol(ΣD−2)

2κ (1− ω2)
rD−1−θ
h , J = −(D−1−θ)ωVol(ΣD−2)

2κ (1− ω2)
rD−1−θ
h . (3.41)
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On the other hand, the corresponding soliton is described by the following line element

ds2 =
1

r
2θ

D−2

[
−r2 dt2 +

dr2

f(r)
+ f(r) dϕ2 + r2

D−3∑

i=1

dx2i

]
, (3.42)

with the metric function and the scalar field given by

f(r) = r2

{
1−

[
2

(D − 1− θ) r

]D−1−θ
}
, φ(r) =

√
θ (θ −D + 2)

κ(D − 2)
ln(r).

The mass of the soliton obtained through the quasilocal charge expression (1.2) reads

Msol = −Vol(ΣD−2)

2κ

(
2

D − 1− θ

)D−1−θ

, (3.43)

and it is straightforward to check that the Cardy-like formula (2.4) with deff = D − 2 − θ

fits perfectly with the gravitational entropy (3.40).

3.5 Hyperscaling violation black hole with higher-order gravity theory

As said before, the effective spatial dimensionality deff is not always equal to D− 2− θ but

may have a different expression depending on the theory considered. Nevertheless, in order

to corroborate the Cardy-like formula with a different value of the effective dimension, we

opt for a pure quadratic gravity theory defined by the action

1

2κ

∫
dDx

√−g
(
β1R

2 + β2RµνR
µν
)
, (3.44)

with field equations given by

Gµν := β2�Rµν +
1

2
(4β1 + β2) gµν�R− (2β1 + β2)∇µ∇νR+ 2β2RµανβR

αβ + 2β1RRµν

−1

2

(
β1R

2 + β2RαβR
αβ

)
gµν = 0. (3.45)

After a straightforward computation, one can see that the field equations admit the line

element (3.39) with θ = D − 1 with the metric functions given by

N2(r) = r2
(
1− ω2

)
F (r)

(
r2 − F (r)ω2

)−1
, R2(r) =

1

1− ω2

(
r2 − F (r)ω2

)
,

Nϕ(r) = ω

(
r2 − F (r)

)

(r2 − ω2F (r))
, F (r) = r2

(
1−

(rh
r

) 2(D−1)
D−2

)
,

and, where the coupling constants are tied as

β1 = −(D + 2)β2
5D − 2

.

The entropy and temperature of the solution are given by

S =
16πVol(ΣD−2) (D − 1)2 β2

(5D − 2) (D − 2)κ
√
1− ω2

r
D

D−2

h , T =
(D − 1)

√
1− ω2 rh

2 (D − 2)π
, (3.46)
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which imply that the effective dimension is deff = D/(D− 2). Without giving more details,

we just report the usual quantities of interest

M =
4
(
D + ω2 (D − 2)

)
β2 (D − 1)2Vol(ΣD−2)

(D − 2)2 κ (5D − 2) (1− ω2)
r

2(D−1)
D−2

h ,

J = − 8 (D − 1)3 β2Vol(ΣD−2)ω

(D − 2)2 κ (5D − 2) (1− ω2)
r

2(D−1)
D−2

h ,

Msol = −16Vol(ΣD−2)β2
(5D − 2)κ

(
D − 2

4

) D
D−2

(
4

D − 1

) 2
D−2

, (3.47)

and again, we constat the perfect matching between the gravitational entropy and the

Cardy-like formula (2.4).

4 Testing the Cardy-like formula in the anisotropic case

We now consider the anisotropic case which corresponds to a dynamical exponent z 6= 1

with our convention. In the static case, the asymptotic metric of anisotropic (Lifshitz or

hyperscaling violating) black holes can be described by the following line element

ds2 =
1

r
2θ

D−2

[
− r2zdt2 +

dr2

r2
+ r2

D−2∑

i=1

dx2i

]
, (4.1)

where now z 6= 1 is responsible of the anisotropy between the time and the space

coordinates.

In spite of the fact that the Cardy-like formula (2.4) is also appropriate with z 6= 1,

stationary anisotropic black hole solutions are not known in the literature. Moreover,

unlike the isotropic case, the Lorentz boosts are not longer symmetries for spacetimes with

z 6= 1, and hence the usual trick of performing a Lorentz boost to the static solution

may yield to a metric with a rather obscure causal structure. These are the reasons for

which we will first concentrate on static anisotropic black holes (J = 0) in order to test

the consistency of the formulas (2.4)–(2.5). Nevertheless, in the last subsection, we will

observe the effect on turning on the momentum of a static Lifshitz black hole by the usual

Lorentz transformation. Making abstraction of the causal structure, we will compute the

mass and angular momentum of the resulting metric and see explicitly that the Cardy-like

formula with J 6= 0 is still consistent with the gravitational entropy.

4.1 Lifshitz black holes with higher-order gravity theories

We now deal with a gravity action in arbitrary dimension D with quadratic-curvature

corrections given by

S =
1

2κ

∫
dDx

√−g
(
R− 2Λ + β1R

2 + β2RαβR
αβ + β3RαβµνR

αβµν
)
. (4.2)
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The corresponding field equations read

Gµν + Λgµν + (β2 + 4β3)�Rµν +
1

2
(4β1 + β2) gµν�R− (2β1 + β2 + 2β3)∇µ∇νR

+ 2β3RµγαβR
γαβ
ν + 2 (β2 + 2β3)RµανβR

αβ − 4β3RµαR
α
ν + 2β1RRµν (4.3)

− 1

2

(
β1R

2 + β2RαβR
αβ + β3RαβγδR

αβγδ
)
gµν = 0.

In refs. [51, 52], three families of Lifshitz black hole solutions were found. In the present

case, we are only interested on the family for which the dynamical exponent z > −(D− 2)

and described by the following line element2

ds2 = −r2z
[
1−

(rh
r

) z+D−2
2

]
dt2 +

dr2

r2
[
1−

(
rh
r

) z+D−2
2

] + r2
D−2∑

i=1

dx2i . (4.4)

The coupling constants ensuring the existence of this solution can be found in [51, 52]. For

this family of solution, the entropy and temperature are

S = −2πVol(ΣD−2)

κ
Q(z)rD−2

h , (4.5)

T =
(z +D − 2) (rh)

z

8π
, (4.6)

with

Q(z) =

(
3 z2 + (D − 2)(D + 2)

)
(D − 2 + 3 z) (D + 2− 3 z)

27z4−4(27D−45)z3−(D−2)
[
2(5D−116)z2+4(D2−D+30)z+(D+2)(D−2)2

] .

(4.7)

Since the field equations are of higher order, we find more convenient to adopt the quasilocal

formalism in order to compute the mass. This will correspond to the charge Q defined

in (1.2) with a Killing vector field ξt = ∂t. In the present case, the tensor Pαβγδ appearing

in the charge formula (1.2) is given by

Pαβγδ =
1

4κ

(
gαγgβδ − gαδgβγ

)
+

β1
2κ

R
(
gαγgβδ − gαδgβγ

)

+
β2
4κ

(
gβδRαγ − gβγRαδ − gαδRβγ + gαγRβδ

)
+

β3
κ
Rαβγδ.

After a tedious but straightforward computation, one obtains the expression of the mass

M = −(D − 2)Vol(ΣD−2)

4κ
Q(z) rz+D−2

h . (4.8)

As usual, the corresponding static soliton is

ds2 = −r2dt2 +
1

r2
dr2

f(r)
+ r2z f(r) dϕ2 + r2

D−3∑

i=1

dx2i ,

f(r) = 1−
[

4

(z +D − 2)

] z+D−2
2z 1

r
z+D−2

2

, (4.9)

2The two remaining Lifshitz black hole solutions have a zero entropy.
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and its mass is computed to be

Msol = zVol(ΣD−2)

[
4

(z +D − 2)

] z+D−2
z Q(z)

4κ
. (4.10)

It is interesting to note again that the expression of the entropy (4.5) coincides with the

Cardy-like formula with deff = D−2, J = 0 and for any value of the dynamical exponent z.

4.2 Charged anisotropic black holes with two Abelian gauge fields

In this subsection, we would like to check the charged version of the Cardy-like formula (2.5)

in the anisotropic and static situation, z 6= 1 and J = 0. In order to achieve this task,

one considers the case of Einstein gravity with two abelian fields A(i) and a dilaton φ

with action

S =
1

2κ

∫
dDx

√−g

(
R− 2Λ− 1

2
∂µφ∂

µφ− 1

4

2∑

i=1

eλiφF2
(i)

)
, (4.11)

with F2
(i) = F(i)µνF

µν
(i) for i = 1, 2. For the following ansatz

ds2 = −r2zF (r)dt2 +
dr2

r2F (r)
+ r2

D−2∑

i=1

dx2i , (4.12)

A(i)µdx
µ = A(i)tdt, φ = φ(r),

a solution was found in [53]

F (r) = 1−m
(rh
r

)z+D−2
+ (m− 1)

(rh
r

)2(z+D−3)
, (4.13a)

A(1)t =

√
2(z − 1)

z +D − 2
µ−λ1

2 (rz+D−2 − rz+D−2
h ), (4.13b)

A(2)t = −
√

2(m− 1)(D − 2)

z +D − 4
µ−λ2

2 rz+D−3
h (r−(z+D−4) − r

−(z+D−4)
h ), (4.13c)

eφ = µr
√

2(D−2)(z−1), λ1 = −
√

2(D − 2)

z − 1
, λ2 =

√
2(z − 1)

D − 2
, (4.13d)

where m,µ are integration constants, and rh stands for the location of the horizon. Note

that this presentation (4.13) is equivalent to the one considered in [53], after some redefi-

nitions of the constants. We stick to (4.13) for latter convenience. With our notation, the

Wald entropy and Hawking temperature read

S =
2π

κ
rD−2
h Vol(ΣD−2), (4.14)

T =
[(z +D − 4)(2−m) + 2]

4π
rzh,

while the mass, electric potential and electric charge are

M =
(D − 2)m

2κ
rz+D−2
h Vol(ΣD−2), Φe =

√
2(D − 2)(m− 1)

z +D − 4
µ−λ2

2 rh,

Qe =

√
2(D − 2)(m− 1)(z +D − 4)µ

λ2
2

2κ
rz+D−3
h Vol(ΣD−2).
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It remains to derive the soliton counterpart from the uncharged black hole solution which

corresponds to the limit m → 1. The double Wick rotation takes the following form

ds2 = −r2dt2 +
dr2

r2f(r)
+ r2zf(r)dϕ2 + r2

D−3∑

i=1

dx2i , (4.15)

f(r) = 1−
(
r̃h
r

)z+D−2

,

where we have defined

r̃h =

(
2

z +D − 2

) 1
z

.

Using (1.3) , the variation of the Noether potential and the surface term read

∆Krt = − r̃h
z+D−2

κ
,

∫ 1

0
ds Θr = −z − 2

2κ
r̃h

z+D−2,

and then the mass of the soliton is

Msol = −zVol(ΣD−2)

2κ

(
2

z +D − 2

) z+D−2
z

. (4.16)

It is now straightforward to check that the formula (2.5) matches perfectly with the Wald

entropy (4.14).

4.3 Turning on the angular momentum

We now turn on the angular momentum of the solution discussed in section 4.1 by operating

a standard Lorentz transformation

t → 1√
1− ω2

(t+ ω ϕ), ϕ → 1√
1− ω2

(ϕ+ ωt).

The resulting metric reads

ds2 = −N2(r)dt2 +
dr2

F (r)
+R2(r) (dϕ+Nϕ(r)dt)2 + r2

D−3∑

i=1

dx2i , (4.17)

where

N2(r) = r2(z+1)H(r)
(
1− ω2

) [
r2 − r2 zH (r)ω2

]−1
,

R2(r) =
1

(1− ω2)

[
r2 − r2 zH (r)ω2

]
, F (r) = r2H(r), (4.18)

Nϕ(r) = ω
[
r2 − r2 z H(r)

] [
r2 − r2 zH (r)ω2

]−1
, H(r) =

[
1−

(rh
r

) z+D−2
2

]
.

As already mentioned, the resulting metric may suffer some pathology essentially due to

the fact that the combination r2 − r2zH(r)ω2 is not ensured to be positive for any value
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of r > 0 as it is the case in the isotropic situation z = 1. Nevertheless, making abstraction

of this problem, one can still compute the entropy and temperature of the solution

S = −2πVol(ΣD−2)

κ
√
1− ω2

Q(z) rD−2
h , (4.19)

T =
(z +D − 2)

√
1− ω2rzh

8π
, (4.20)

where Q(z) is defined in (4.7). One of the advantage of the quasilocal formalism [27, 28]

is precisely to overcome the difficulty at infinity by introducing a one-parameter and by

integrating in the interior region and not at infinity. Since the asymptotic form of the

resulting metric (4.17)–(4.18) is not clear, the quasilocal formalism seems to be very-well

appropriated to circumvent this problem. In doing so, one can compute the mass and the

angular momentum

M = −(D − 2 + zω2)Vol(ΣD−2)

4κ(1− ω2)
Q(z) rz+D−2

h , (4.21)

J =
(z +D − 2)Vol(ΣD−2)ω

4κ(1− ω2)
Q(z) rz+D−2

h . (4.22)

Finally, it is somehow appealing that the Cardy-like formula (2.4) with the angular

momentum turning on still reproduces the correct value of the gravitational entropy.

5 Summary and concluding remarks

Here, we have considered rotating (an)isotropic black holes in arbitrary dimension with

a planar horizon which are obtained from static configurations through a Lorentz trans-

formation. The aim of this paper is to show that the spinning black hole entropy can be

obtained from the microcanonical degeneracy of states according to a Cardy-like formula

making no reference to any central charge but instead involving the mass of the ground

state. The ground state is in fact identified with a gravitational bulk soliton. Hence, one

of our working hypothesis in order to reproduce the semiclassical black hole entropy is the

existence of a soliton. From a technical perspective, the soliton, in all the examples we have

treated, is obtained from the static black hole by a double analytic continuation followed by

a suitable rescaling that permits to absorb the constant of integration. This procedure is

quite similar to the one that yields the AdS soliton [19]. In doing so, the resulting solitonic

solution turns to be smooth, regular and devoid of any constant of integration fulfilling

what the ground state is expected to be. However, there exist black hole solutions for

which the double Wick rotation does not apply for different reasons. For example, this can

occur for black holes for which the topology of the event horizon presents an anisotropic

scaling symmetry. Such examples have been known much before the advent of Lifshitz

spacetimes [54]. In this reference, two families of static black holes solutions of Einstein

equations in five dimensions with a negative cosmological constant were constructed, and

the horizon topologies of these solutions are modeled by the Solv 3−geometry and the Nil

3−geometry. These geometries are two of the eight geometries of the Thurston classifica-

tion. The Solv (resp. the Nil) solution is asymptotically AdS (resp. Lifshitz with z = 3/2)
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but both solution enjoys an anisotropy along one of the coordinates of the event horizon

responsible of the violation of the hyperscaling property. On one hand, a simple calculation

shows that the Cardy-Verlinde formula [9] for the Solv solution does not yield the correct

temperature dependence. On the other hand, while the Solv solution fits perfectly our

assumptions, some complications have emerged concerning the Nil solution, in particular

to construct the corresponding soliton. An interesting task will consist in understanding

what would be the soliton configuration for the Nil solution or how to construct it (even

numerically). One can go further extending the analysis done in this paper to the many

examples of black holes with Thurston horizon topology.

Another aspect that may deserve some attention in the future has to do with the Smarr

formulas. These latter are relations expressing the mass as a simple bilinear form involving

the other conserved charges and the thermodynamical quantities [55]. Smarr relations can

also be viewed as the integral forms of the first law of thermodynamics. For example, in all

the cases studied in this paper, the solutions satisfy a Smarr relation given generically by

M =

(
deff

deff + z

)
TS +ΩJ.

In the case of asymptotically AdS black holes, extended versions of the first law and of

the Smarr formula have been obtained where the cosmological constant is considered as a

thermodynamic variable, see e.g. [56, 57]. In this perspective, the mass of the AdS black

hole may be understood as the enthalpy of spacetime while the cosmological constant plays

the role of a pressure term in the first law. Recently, these ideas have been shown to hold

also for Lifshitz black holes [58]. Since Smarr and Cardy formulas are intimately linked,

it will be interesting to identify the physical implications on the Cardy-like formulas of

viewing the mass as enthalpy.

Finally, we expect that the survey operating in this paper, apart from confirming the

validity of the Cardy-like formulas, will be of relevance in order to clarify some issues

concerning the field theory side.
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