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Many networked systems involve multiple modes of transport. Such systems are called
multimodal, and examples include logistic networks, biomedical phenomena and telecom-
munication networks. Existing techniques for determining minimal paths in multimodal
networks have either required heuristics or else application-specific constraints to obtain
tractable problems, removing the multimodal traits of the network during analysis. In
this paper weighted colored-edge graphs are introduced for modeling multimodal net-
works, where colors represent the modes of transportation. Minimal paths are selected
using a partial order that compares the weights in each color, resulting in a Pareto set of
minimal paths. Although the computation of minimal paths is theoretically intractable
and NP-complete, the approach is shown to be tractable through experimental analyses
without the need to apply heuristics or constraints.

Keywords: Multimodal transportation system; shortest path; weighted colored-edge
graph.

1. Introduction

Extensive scientific literature has been devoted in the last three decades to the study
of multimodal networks (MMN). During this time, research has mainly focused on
practical applications for freight or urban transportation, extensive reviews are
found in Jarzemskiene (2007) and Macharis and Bontekoning (2004).
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As a system in which several means of transport are available, a multimodal
system is able to emulate a wide spectrum of real life phenomena beyond the field of
logistics. Areas such as computer networks, biology and manufacturing have begun
to utilize multimodal networks for studying and modeling situations. Examples can
be found in papers by Abrach et al. (2003), Chen et al. (2005), Heath and Sioson
(2007), Kiesmdiller et al. (2005), Nigay and Coutaz (1993), Medeiros et al. (2000)
and Sioson (2005).

From a modeling perspective, a range of techniques have been used to model
MDMN. They can be loosely classified into three predominant domains: mathematical
programming, weighted graphs and multi-weighted graphs.

1.1. The mathematical programming approach

These techniques are characterized by making use of linear or nonlinear formulations
for representing a MMN by a set of equations.

Linear programming techniques are suitable when each decision variable is a
linear combination of the problem parameters, Hillier and Lieberman (2009). Inte-
ger programming and mixed integer programming stand out as the most common
linear programming techniques used for multimodal modeling. Sample papers using
linear programming as a modeling tool are given by Min (1991) and Kim et al.
(1999).

Nonlinear programming is another renowned modeling technique for MMN. It is
mainly used to build intricate cost functions, and principally deals with second order
equations satisfying convex or concave properties. Examples are provided by Kim
and Kim (2006), Horn (2003) and Chang (2007) which have opted to use nonlinear
programming as their main modeling approach.

In the mathematical programming approach, mode options are visualized as
decision variable indices, which considerably increases the complexity of the prob-
lem. Relaxation or cutting plane techniques are commonly used to make the problem
tractable. Interesting papers tackling general views of mathematical programming
for intermodal transportation (the transportation of goods) and urban transporta-
tion are presented by Jarzemskiene (2007) and Nagurney (1984), respectively.

1.2. The wetighted graph approach

In this approach, a node typically represents a location, such as a warehouse, trans-
portation hub or network router, and an edge represents a transportation link, such
as a rail line, a bus or a wireless connection. A variety of graphs have been used
to study these transport systems, such as digraphs, multigraphs, hypergraphs and
grid graphs. Ayed et al. (2008) provides a general classification for MMN models
based on weighted graph approaches. In particular, the paper emphasizes the use of
multigraphs, in which there might be multiple edges between two nodes, and the use
of grids in which a grid is overlayed on a planimetric map. Both can result in dense
graphs, which require edge reduction techniques to make their analysis tractable.
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In practice such reductions rely on enforcing constraints on feasible edges in order
to build a specific path. In the context of freight transportation, such constraints
usually correspond to timetables, consolidation options, time windows, scheduling
options and suchlike. Studies making use of such graphs and constraints are pro-
vided by Foo et al. (1999), Qiang Li (2000), Kitamura et al. (1999), Fragouli and
Delis (2002) and Moccia et al. (2011). Hypergraphs are another type of graph used
in some articles. In graph theory, a hypergraph is a generalization of a graph, where
edges can connect any number of vertices (Lawler, 2001). In the multimodal context,
such graphs have found interesting applications in biology and urban transportation.
Sample papers using hypergraphs to represent MMN are yielded by Heath and Sio-
son (2007), Sioson (2005) and Lozano and Storchi (2002). A recent work using multi-
level graphs for modeling urban transportation networks is presented by Ma (2014).
A A¥* label-setting algorithm is designed by the authors for solving the model.

In effect, the weighted graph approach only utilizes mode information during
the application of constraints, removing the multimodal traits from the network
during modeling. The analysis in this approach is very application-dependent as it
relies on applying application-specific constraints.

1.3. The multi-weighted graph approach

This approach has been extensively utilized for the multicriteria shortest path prob-
lem (MSPP) which has become a fruitful branch of research since the 1980s, see
Tarapata (2007) and Climaco and Pascoal (2012) for a complete review. Basically,
the approach assigns multiple weights to each edge. In particular, the bicriteria
shortest path problem assigns two weights to each edge, such as cost and time.
A complete survey on solution strategies for bicriteria shortest path problems is
provided by Raith and Ehrgott (2009).

Optimality in the multi-weighted graph approach is commonly established by
the use of a partial order relation which results in a Pareto set of minimal paths
that are candidates for the sought shortest path. There is little literature that
directly applies multi-weighted graphs for modeling MMN, but the goal of MSPP
is essentially the same as for the shortest path problem in MMN. Although articles
developing MSPP formulations for MMN can be identified, they preferentially use
partial orders to optimize route choice decisions mainly based on cost and time,
leaving the mode options as an outcome of the optimal route.

In terms of complexity, the tractability of the MSPP is inextricably connected
with the cardinality of the Pareto set according to Miiller-Hannemann and Weihe
(2006). These authors also mention an important fact: No algorithmic considera-
tion is capable of providing a significant improvement on the tractability, so that
approaches must focus on identifying and exploiting key characteristics that occur
in an specific application. Garey and Johnson (1979) shows the MSPP in general
is an N"P-hard problem by using a reduction to the satisfiability problem. Hansen
(1980) shows that the Pareto set cardinality is exponential in the worst case by
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constructing a group of graphs where all source—destination paths are Pareto effi-
cient. As a consequence, constraints are applied during analysis to make the problem
tractable, resulting in a Pareto set with manageable cardinality. MMN models whose
mainstay is a multi-weighted graph can be found in manuscripts by Androutsopou-
los and Zografos (2009), Aifadopoulou et al. (2007) and Modesti and Sciomachen
(1998).

This work aims to study a modeling technique capable of keeping modes through-
out the analysis. The approach is tested by analyzing the computation of the short-
est path problem in two cases: randomly generated MMN and a real MMN from
Europe.

The paper is organized as follows. In Sec. 2, a fourth approach for modeling
MMN is introduced and compared with the three previous approaches. An algo-
rithm is described in Sec. 3 that is used in the paper to compute minimal paths
in weighted colored-edge graphs. In Sec. 4, the computation of minimal paths in
colored-edge graphs is proved to be both intractable and N'P-complete. The model
is experimentally studied in Sec. 5. Moreover, the algorithm is applied to a real mul-
timodal network in order to assess its practical applicability. Finally, Sec. 5 provides
conclusions about this paper.

2. Weighted Colored-Edge Graph Approach

All the approaches described in Sec. 1 are heavily application specific and do not
actually utilize the multimodal nature of a network. In this paper, an approach to
model and analyze multimodal networks is introduced. In essence, such approach
uses a weighted graph in which edges are endowed with two attributes: a positive
weight and a discrete variable called color.

A weighted colored-edge graph G = (V, E,w,\) consists of a directed graph
(V, E) with vertex set V and edge set F, a weight function w: F — R on edges,
and a color function A\: E — M on edges, where M is a set of colors. Typically M
is taken as a finite set with k = |M|. Associated to each edge e,, € E from vertex
u to vertex v there is a positive weight w(e,,) and a color A(e,,) = c¢. For any
color i € M and for any path puy = {€wow1s Cxrawar Casass- - -» a1z, DEtWeen two
vertices u = x¢ and v = x;, where each x; € V, the path weight w.(py,) in color
c is defined as we(puy) = Zemmﬂep,A(emimiﬂ):cw(e$m+1)‘ The total path weight
is represented as a k-tuple (we, (Puv), - - -, We,, (Puv)), giving the total weight of the
path in each color.

Note that there is no restriction placed on the number of edges e,,, from a vertex
u to a vertex v. However, in practice for the shortest path problem attention can
be restricted to weighted colored-edge graphs for which there is at most one edge
ey in each color from u to v.

Let u and v be two given vertices of G and let P, be the set of all paths from
u (source) to v (destination) in G. A binary relation between two paths p,, and
Pl is defined by py, < pl,, if and only if we(puy) < we(pl,,) for all c. The relation
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< is clearly reflexive, transitive and antisymmetric and gives a partial order on the
k-tuple path weights, but only a preorder on the paths themselves as multiple paths
might have the same total path weight.

Let Myy={puv € Puv |Vl € Puv with w(pl,,) # w(Puv), 3 color ¢ such that
We(Puw) < we(pl,)} be the set of Pareto minimal paths joining vertices u and v.
This set has an important characteristic: for any p,, € My, it is impossible to
determine a path p], from u to v which has smaller weight than p,, in some of
its k colors without at least one of the other weights being larger, analogously to
Martins (1984).

From the above definitions, it is apparent that the concept of a weighted
colored-edge graph with k& colors can equivalently be formulated as a multi-
weighted multigraph where each edge is assigned a k-tuple of non-negative weights
(Weyy vy Weyy ... W, ) and exactly one w,, > 0. However, multiweighted graphs
are mostly used in multicriteria optimization applications where the weight com-
ponents correspond to quantities to be optimized, such as cost and time, so edges
typically contribute toward more than just one quantity. For this reason, multi-
weighted graphs whose edge weights are zero in all but one component have not
received attention in the literature.

Shortest path analysis in the weighted colored-edge graph approach is seen in
this paper to typically be tractable without the need to apply any application-
specific heuristics or constraints, so can be considered a general tool for the study
of multimodal networks. Application-specific considerations can still be applied to
the resulting set M, or a post-optimal analysis undertaken on it. One facet of
this model is that it can be directly applied to multigraph applications, such as
transportation networks where there are multiple transportation means between
two locations, communication networks where there are multiple links or choice of
communication protocols between nodes, or epidemic models which have multiple
paths of infection.

However, focusing attention only on the Pareto minimal paths limits the
approach to shortest path problems where just the summed contribution of each
color is important, and where any measure of optimality is presumed to be an
increasing (linear or nonlinear) function of the summed contribution in each color.
For instance, the approach presumes in a transportation network that the minimal
path (such as least cost, time, or distance) is some application-specific increasing
function of the total weight in each transportation means, or that the user can apply
some application-specific criteria to select a preferred path from the Pareto set once
it has been determined.

The approach can be also adapted for path constraints such as restricting the
number of hops or the number of mode changes by slightly enhancing the algorithm
used to determine the Pareto set. For instance, besides using colors to represent
the different transportation means, an additional color can be used to count the
number of edges in a path as the path is being built during the analysis and/or to
count the number of transfers from one means of transportation to another.
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Optimization problems that utilize models similar to weighted colored-edge
graphs have received little attention in the literature. Climaco et al. (2010) exper-
imentally studied the number of spanning trees in a weighted graph whose edges
are labeled with a color. In that work, weight and number of colors are two criteria
to be both minimized and the proposed algorithm generates a set of nondominated
spanning trees. In a similar work, Pascoal et al. (2013) develop an algorithm to gen-
erate a set of nondominated paths. Edges in the graph have two associated criteria:
a cost value and a label (color). Unlike the previous work which tackles spanning
trees, the authors focus on analyzing paths with two attributes. The computation of
colored paths in a weighted colored-edge graph is investigated by Xu et al. (2009).
The main feature of their approach is a graph reduction technique based on a
priority rule. This rule basically transforms a weighted colored-edge multidigraph
into a colored-vertex digraph by applying algebraic operations to the adjacency
matrix. Additionally, the authors provide an algorithm to identify colored source—
destination paths. Nevertheless, the algorithm is not intended for general instances
because its input is a unit weighted colored multidigraph and only paths not having
consecutive edges equally colored are considered.

This paper investigates the feasibility of the colored-edge graph as a general tool
for multimodal transportation systems by determining the cardinality of the Pareto
set My, for many randomly weighted networks. Despite the intractability and NP-
completeness of the problem (Sec. 4), the cardinality is shown to typically be a very
low order polynomial function of the size of the network, and demonstrates that
even dense multimodal graphs with hundreds of thousands of edges can be feasibly
analysed using this approach, without the need for any reduction techniques. In fact,
it is seen that the number of modes k is more of a limiting factor of the approach
than is the number of vertices or edges in the graph.

3. Algorithm for Determining Pareto Set of Minimal Paths

To experimentally study the feasibility of using weighted colored-edge graphs for
multimodal networks an algorithm that determines M., is required. Since no con-
tribution from an algorithmic view is sought by this manuscript, a simple general-
ization of Dijkstra’s algorithm from unimodal networks has been developed for the
purposes of this research, although more efficient algorithms might be investigated
in the future.

The classic Dijkstra’s algorithm for solving the single-source shortest path prob-
lem in unimodal networks uses a priority queue @ to store shortest path estimates
from a fixed source vertex s to each vertex v in the network until the shortest path
to v is determined. Since the weights of any paths ps, from s to v are linearly
ordered there is only at most one shortest path estimate in the queue at a time
for each vertex v. At the start of each iteration of the algorithm the shortest path
estimate at the front of the queue is the actual shortest path to one of the vertices
in the network.
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In a weighted colored-edge graph Dijkstra’s algorithm must be slightly gen-
eralised to handle weights of paths being partially ordered rather than linearly
ordered. A priority queue ) can again be used to store shortest path estimates with
the requirement that if a path ps, from s to v has smaller weight than another
path p’, then it must appear earlier in the queue. Although the results presented
in this paper use such a simple queue instead of a more sophisticated nonlinear
data structure the performance of the algorithm is seen to be surprisingly good for
colored-edge graphs with random weights. As in the classical Dijkstra’s algorithm
the weighted colored-edge version of the algorithm takes as input a network G and
a source vertex s. It commences at s with the empty path pss and relaxes each edge
that is incident from the source vertex s, adding the single edge paths to the queue.
At the front of the queue will be a shortest path estimate ps, to some vertex v
adjacent to s. Since all weights are positive in the network ps, must have minimal
weight amongst paths from s to v (although it might not be the only minimal path
from s to v in the queue), so ps, is added to the set My, and removed from the
queue. The algorithm then relaxes all the edges incident to v, extending the path
Psv by each edge to a path pl, = psy U {eww}, adding those extended paths pl,, to
the queue that have minimal weight amongst paths from s to u, and removing from
the queue any path p/, from s to u that has greater weight than p’,,. The algorithm
repeats itself until the queue is empty, producing as output the Pareto set Mg, for
each vertex v in the network. Figure 1 describes the pseudocode of the algorithm
using the notation developed by Cormen et al. (2001).

MULTIMODAL-DIJKSTRA (G, s)

1 > Initially no Pareto minimal paths known
2 for each vertex v
3 do Mgy < 0
4 > Create a queue Q to hold shortest path estimates during processing
5 Q<+ 0
6 add the empty path pss from s to s into @
7 while Q # 0
8 do remove the path psy at front of @) that has some end vertex v
9 add the path psy to Mgy
10 > Relax the edges incident from v
11 for each edge eyq incident from v to a vertex u not in psy
12 do > Extend the path psy by the edge eyy
13 p/su — psv U {evu}
14 if p}, has minimal weight in Q from s to u
15 then add pl, to Q
16 > Remove any paths no longer minimal in Q
17 for each pY, € Q with w (p;/u) >w (p;u)
18 do remove the path p4, from @

19 return Mg,

Fig. 1. Pseudocode of the algorithm.
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The iteration of this algorithm works same as Martins’ algorithm (see Martins,
1984). The approach proposed by Martins is a label setting algorithm for the mul-
ticriteria shortest path problem. At each iteration, two sets of labels are estimated:
permanent and temporary. Martins’s approach also produce a set of minimal paths.
Analogously, the multimodal Dijkstra’s algorithm uses the queue datastructure to
manage “temporary” paths estimates that could become “permanent” or part of
M, when the partial order relation is applied.

The number of relaxation steps is an important indicator of the algorithm’s
order, so besides finding My, the experiment discussed in Sec. 5 also tracks the
number of paths p’, processed by the algorithm.

As an example of an application of the weighted colored-edge graph approach,
the algorithm is run with a multimodal network developed by Lozano and Storchi
(2001) starting at source vertex 0. Figure 2 shows the network which has 21 vertices,
51 edges and 4 different transport choices (bus, metro, private and transfer).

The algorithm commences with just the empty path pgp on the queue and relaxes
two edges: eg1 with weight (bus, metro, private, transfer) = (15,0, 0,0), and ep3 with
weight (0,0,5,0), which are both added to the queue. Since the two weights are
incomparable, either could be at the front of the queue, so the next iteration of
the algorithm either adds the path pg1 = {ep1} to Mo and relaxes the four edges
incident to vertex 1 by extending the path pg; by each, or else adds the path
pos = {eo3} to Mops and relaxes the three edges incident to vertex 3 by extending
the path pgs by each. Continuing in this way the Pareto set Mg, is obtained for
each vertex v in the network, resulting in 52 Pareto minimal paths from vertex 0
to vertex 20 whose weights are listed in Table 1.

Depending on the application, constraints or heuristics can then be applied to
the 52 paths to select a path preferred by the user. Using just a simple priority
queue data structure the generalized Dijkstra’s algorithm can determine My, for
all 21 vertices v within approximately 10 ms. The article by Lozano and Storchi
(2001) instead uses a weighted graph approach with application-specific constraints
and a simple cost function which adds the weights in each mode together to get
a single valued total weight, resulting in the paths numbered 2, 25, 33, 47 in the
table.

Note that a Pareto set permits a post-optimal analysis to be carried out provided
that the total cost is presumed to be an increasing 4-ary function® of the summed
weight in each mode. For instance, suppose in the example network that the edge
weights represent distance and for simplicity presume the cost is one dollar per unit
distance for each means of transport. A natural optimization question could be how
much the unit cost associated to a particular mode could be increased or decreased
with the current minimal path remaining minimal. As an illustration, path 25
which has the edges {603,631,619,69 10, €1014,€1415,€1517, €1716, €16 18, €18 19, €19 20}

2A k-ary function is a function that takes k arguments as input. In the context of this article,
these arguments correspond to the total weight in each mode that a path can generate.
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(D)

@—)@ metro

@_’@ private
@“ - _’® transfer

Fig. 2. Multimodal network from paper Lozano and Storchi (2001).

and shown in Fig. 3 has least total cost $47, but from the Pareto set it is eas-
ily seen that an increase of over 20% in the relative metro costing would make
path 41 with edges {eos, €31, €19, €913,€1315,€1517, €17 16, €16 18, €18 19, €1920 } & bet-
ter choice, or a 25% increase in bus prices would make path 16 with edges
{603, €32,€210,€1014,€1415,€1517, €1716, €16 18, €18 19, €19 20} better.

The approach can be adapted for path constraints such as restricting the number
of hops or the number of mode changes by slightly enhancing the algorithm. For
instance, besides using colors to represent the different transportations options, an
additional color can be used to count the number of edges in a path as the path is
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Table 1. Pareto set for network with 21 vertices and 51 edges.

Path number

Transport choice cost

Cost as per
Lozano and Storchi (2001)

Bus Metro Private Transfer

1 25 4 21 5 55

2 0 30 21 4 55

3 32 9 5 9 55

4 13 11 21 8 53

5 24 0 36 10 70

6 11 26 21 5 63

7 21 26 5 7 59

8 50 19 0 4 73

9 41 4 2 7 54
10 8 45 5 9 67
11 3 4 43 3 53
12 13 4 36 11 64
13 10 30 14 12 66
14 25 26 2 12 65
15 26 0 34 10 70
16 3 31 7 10 51
17 16 4 41 5 66
18 47 9 0 5 61
19 31 31 0 6 68
20 14 0 43 2 59
21 23 45 0 8 76
22 52 4 0 1 57
23 24 7 21 7 59
24 25 11 12 10 58
25 19 9 7 12 47
26 32 22 5 6 65
27 16 31 5 7 59
28 29 27 2 8 66
29 36 0 21 4 61
30 15 4 34 11 64
31 14 27 7 9 57
32 12 23 21 7 63
33 63 0 0 0 63
34 39 23 0 3 65
35 24 23 5 7 59
36 36 26 0 6 68
37 12 30 12 6 60
38 10 26 7 13 56
39 18 31 2 9 60
40 27 0 41 4 72
41 26 4 7 11 48
42 29 0 38 6 73
43 52 0 2 6 60
44 22 30 5 6 63
45 34 9 2 8 53
46 48 0 5 4 57
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Table 1. (Continued)

Path number Transport choice cost Cost as per
Lozano and Storchi (2001)

Bus Metro Private Transfer

47 37 4 5 5 51
48 37 30 0 2 69
49 36 7 12 9 64
50 18 4 38 7 67
51 27 27 5 [§ 65
52 37 0 7 10 54

bus \ @
\ 7

private

2
@—)@ metro @
O—0
O---O

transfer

Fig. 3. Path 25 used for a post-optimal analysis.

being built during the analysis or count the number of transfers from one means of
transportation to another.

This example demonstrates that the multimodal Dijkstra’s algorithm can
quickly calculate the Pareto set without the need to assign relative costs for the
different modes. Then alternative cost functions can be evaluated on just the paths
in the Pareto set or a post-optimal analysis conducted without ever having to rerun
the algorithm on the network.

In summary, Lozano and Storchi (2001) develop a graph approach that identi-
fies viable paths (paths satisfying a set of specific constraints). By doing this, the
approach reduces the size of the problem and removes the multimodal traits from
the network during the computation. The weighted colored-edge graph differenti-
ates from Lozano and Storchi (2001) approach in two aspects. First, no constraint
needs to be applied to compute minimal paths. Hence the concept of viable paths is
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needless. Second, a post-optimal analysis can be performed in such a way a user can
select mode combinations from the final Pareto set based on different cost functions.

4. Model Complexity

Next the tractability and NP-completeness of the approach are studied. An impor-
tant claim from this section is the use of either a multiweighted graph or a colored-
edge graph involves an equal level of complexity (both approaches are intractable
and N'P-complete). As a result, the selection of one approach depends more on
both an application domain and an user decision. A multiweighted graph approach
is intended for minimizing two or more conflicting criteria, leaving mode combina-
tions as a result of an optimal path, whereas a colored-edge graph approach focuses
on determining minimal paths in which the contribution of each mode is explicitly
computed. In other words, a user whose focus is to establish the most convenient
combination of modes for travelling from a source to a destination could take more
advantage of a colored-edge graph as a modeling tool.

4.1. Tractability of the model

This section shows the computation of minimal paths in a colored-edge graph is in
the worst case an intractable problem.

Theorem 4.1. The computation of My, in a weighted colored-edge graph is, in
worst case, intractable, i.e., require for some problems a number of operations which
grows at least exponentially with these problem’s characteristics.

Proof. It is sufficient to show there exists for each problem a family of weighted
colored-edge graphs for which the cardinality of M,,, grows exponentially with the
number of vertices. First, consider a colored-edge graph G = (V, E,w, \) for which
the vertex set V' can be ordered vy, v, ..., v,—1,v,, where |V| = n. Moreover, this
graph only has edges from v; to v;4+1. The graph has k colors and a source and
destination vertex given by u = v; and v = v, respectively. Note that the total
number of paths from u to v is k"~ !. Consider now the weights of the edge e. € E
from v; to v; 41 satisfy the following conditions:

(1) For all colors ¢, ¢/, the edges e. and e, from v; to v;41 have the same weight,
wl(ee) =wley) = wi.

(2) For the weights W = {w1,wa, ..., w,_1} the sum function Y : P(W)\D — RT is
one to one. For instance, if {w;, , wi,, ..., w;, } and {wj, ,wj,,...,w;j, } are two dis-
tinct nonempty subsets of W, then w;, +wi, + -+ +w;, # wj, +wj, +- -+ wj,.

Note that by Condition (1), for any path p from v = v; to v = v,, the sum of all
the edge weights in the path is fixed:

n—1
Z we(p) = Zwi.
i=1

color ¢
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Suppose p and ¢ are two distinct paths from v = v to v = v,. Then in some color
d, p and ¢ must use different edges, so by Condition (2) we (p) # we (g). Without
loss of generality suppose we (p) < wer(g). As

> welp) = > wela),
color ¢ color ¢

it follows that there is another color ¢ for which we»(p) > wer(q). Hence p and ¢
are incomparable, so all k"' paths are minimal. O

An example of a weighted colored-edge graph meeting Conditions (1) and (2) is
depicted by Fig. 4, where all 3"~! paths from v; to v,, are minimal.

4.2. N'P-completeness

An important aspect of the approach is the computation of the Pareto minimal set
M. To appreciate the difficulty of computing minimal paths in a colored-edge
graph, the N'P-completeness of the problem is next studied. Recall first that the
well-known bin packing problem is A'P-complete (Garey and Johnson, 1979):

Bin packing problem

Instance: A set N of n items, each with a positive integer weight w; for 1 <1i < n,
a positive number of bins k and a positive integer bin capacity 3;, for 1 < j < k.

Question: Can the set N be partitioned in k subsets such that for each subset, the
sum of the weights w; in partition ¢ is at most 3;7

By using a reduction from the bin packing problem, the determination of mini-
mal paths in a colored-edge graph can be shown to be N'P-complete.
Restricted minimal paths in a colored-edge graph
Instance: A colored-edge graph G = (V) E,w, \) with k colors, two distinguished
vertices s and ¢ and a maximum path weight « = (aq, ..., ax).

Question: Does there exist a path from s to ¢ with total weight < a?

Theorem 4.2. The restricted minimal path problem in a colored-edge graph is
NP-complete.

Proof. Use a reduction from the bin packing problem. First, consider a colored-edge
graph G = (V| E,w, \) for which the vertex set V' can be ordered vy, va, ..., Un—1,Un,

1 2 4 "2
SIS0
1 2 4 n2

Fig. 4. A weighted colored-edge graph meeting conditions of Theorem 4.1.
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where |V| = n, and the graph only has edges from v; to v;y1. Additionally, this
graph has k colors and source and destination vertices given by v = v; and v = v,
respectively. Assign each item weight w; to each edge from v; to v;+1. Note that
each path joining u and v has a weight tuple indicating the total weight assigned to
each bin. Hence, each path from u to v in a colored-edge chain is a partition that
might solve the bin packing problem. Next, set a = (51, 2, ..., Br) and apply the
condition that the weight of a path from u to v in the chain has not to be greater
than a. O

The presented theorems provides a pessimistic view about the computation of
minimal paths in colored-edge graphs. No polynomial time algorithm can be devel-
oped for general instances of the problem. Despite this, minimal paths are quickly
computed in the next section for colored-edge graphs with random weights.

Another study of the approach complexity is presented by Ensor and Lillo
(2011). The authors report here two bounds for the number of minimal paths.
The paper first presents a tight upper bound for the number of minimal paths.
This bound is exponential. Next, the authors show a polynomial bound for the
expected number of minimal paths. A polynomial bound for colored-edge graphs
with randomly generated weights indicates that the approach can be in practice
very efficient.

5. Experimental Study

In this section, the weighted colored-edge graph approach is applied to multimodal
networks in two different scenarios. Firstly, the cardinality of M, is analyzed for
colored-edge graphs with random weights. Secondly, the approach is applied to a
real multimodal network. This network corresponds to the transportation system
of France and considers four transport choices.

5.1. Colored-edge graphs with random weights

The objective here is to identify general patterns for the number of processing
paths and M, cardinality. In this test a weighted complete multigraph is taken as
input so that each analytical scenario is generated by fixing values for n = |V and
k = |M|. Such a graph is characterized by having kn(n — 1) edges and the maximum
number of possible paths |P,,| = E;Zg (" ?) kIt j! for v # u, which has factorial
order O(k"~!(n — 2)!). Specifically, the algorithm is run for complete multigraphs
with k = 2,3,4,5 colors and n between 20 and 200 vertices. Random edge weights
are generated by means of a continuous uniform distribution of positive weights.
Figure 5 depicts the patterns followed by M., cardinality. The figure uses a
logarithmic scale for vertical as well as horizontal axes to demonstrate the average
case polynomial behavior as n increases. Table 2 provides the numerical orders
determined for different k values. These results demonstrate not only that the Pareto
set of minimal paths is calculated in polynomial time, but that the resulting set
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Fig. 5. Cardinality of My, for random weighted colored-edge graphs with different number of
colors k.

Table 2. Order of processing paths and M.
cardinality for several k values.

k  Processing paths (p},) Muy cardinality
2 O(n1'28) O(n0.19)
3 O(?’Ll'37) O(n0.32
4 O(n1.52) O(n0'46)
5 O(?’Ll'64) O(n0.61)

requiring further analysis grows very slowly as a function of n. The results resemble
ideas presented by Bentley et al. (1978) and Miiller-Hannemann and Weihe (2001),
suggesting the applicability of the model in real multimodal network scenarios,
even when the networks are dense and without having to apply network reduction
techniques or heuristics.

5.2. Performance in a real multimodal network

The approach is now tested on a large multimodal network. In this test, largeness
is in the sense of number of vertices and edges. The selected network scenario
corresponds to the multimodal transportation system of France being one of the
largest networks in Europe. The multimodal network was obtained from vector
data information retrieved from a public GIS library (Geofabrik, 2010).

The network dataset for each transport choice was first processed in ArcGIS to
make it suitable for computation. ArcGIS is a Windows platform application for the
analysis and processing of vector geographic information system data. This appli-
cation has a network analysis extension that permits the identification of junctions
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Table 3. Characteristics of France multimodal network.

Modes Number of Number of Polyline length

Junctions polylines Maximum Mean Stnd. Dev.
Roadways 53,562 47,660 0.868028 0.010674 0.032452
Railways 18,671 20,083 1.280264 0.014966 0.046192
Motorway 7,720 7,432 1.221951 0.033488 0.078485
Waterways 17,113 11,635 3.238686 0.032070 0.095573

and polylines in each transport system (Burke (2002) describes this concept). In
addition, ArcGIS also has a macro for the computation of the adjacency matrix for
each system of junctions.

Table 3 summarises the number of junctions and polylines for each transport
mode as well as some statistics of network’s polylines. All edge lengths are given in
decimal geographic degrees. Four transport modes comprise the France transport
system: road, rail, waterways and motorways. The road system mainly consists of
primary roads. The rail system is comprised of common train lines disregarding
subway and tram. Waterways are the channels and rivers used as transportation
links. Finally, the motorway system of France includes toll roads and is considered
a different mode of transport in its own right. As an illustration, Fig. 6 depicts the
France road system.

The construction of the multimodal network requires assembling the data for
the four network modes together. This task is accomplished by an ad-hoc algorithm
coded in the Java language. The code basically takes two inputs. These are the

Fig. 6. France roadway system.
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Table 4. Results of France multimodal network.

Cluster  Number of Number of Running Avg. Max
vertices edges time paths paths

0.150 1,501 4,216 0.0170 33.0930 702
0.140 1,869 5,218 0.4993 208.270 3,320
0.130 2,343 6,280 3.1305 404.380 14,972
0.120 2,948 7,696 129.48 2013.82 37,128
0.115 3,308 8,400 557.39 3759.26 58,224

adjacency matrix of each transport mode network and a list of minimum inter-
junction distances in each mode. The latter is built in ArcGIS by taking a mode
junction dataset and applying the “join and relates” tool with respect to each other
mode junction dataset. This information facilitates the performance of a subsequent
clustering procedure used inside of the ad-hoc algorithm.

Two parameters need to be specified once the algorithm code is executed. A
minimum clustering distance (this generates the network vertices) and a source
vertex (a junction number). After entering this information, the Java code invokes
the multimodal Dijkstra’s algorithm, reporting at the end a list with the total
number of minimal paths to each vertex together with two additional variables: The
maximum number of paths found in a particular vertex and the average number of
paths.

This dataset was tested by assigning a cluster distances between 0.150 and
0.115 decimal degrees (14km to 11km). The resulting networks together with run-
ning times (minutes) and average number of minimal paths are shown in Table 4.
The computations were performed on a Xenon computer X5660 (2.8 GHz) CPU
and 24 GB RAM that was set with the queue version of the multimodal Dijkstra
algorithm.

Although the networks shown in Table 4 requiring longer runs of the multi-
modal Dijkstra’s algorithm when the clustering distance is reduced, it cannot be
disregarded that no constraints or reductions were required for obtaining the results
in Table 4 and the cardinality of the resulting Pareto sets are quite manageable for
any further analysis.

6. Conclusion

In modeling multimodal networks, current approaches for determining shortest
paths rely on applying application-specific constraints or heuristics to obtain
tractable problems. This paper introduces a modeling approach that keeps the mul-
timodal traits of a network by assigning discrete color attributes to the edges, uses
a partial order to obtain a Pareto set of paths of potential interest, and avoids the
need for reduction techniques. Although a straightforward approach to modeling
networks in which there are multiple transportation modes, it does appear to give
a new perspective and truly general approach for multimodal networks. Another
feature of this approach is that it results in a Pareto set, which can be further

1650005-17



AsiaPac. J. Oper. Res. 2016.33. Downloaded from www.worldscientific.com
by 200.9.234.6 on 09/15/17. For personal use only.

A. Ensor & F. Lillo

investigated without rerunning the algorithm. This opens the door to post-optimal
analysis in MMN.

Despite having both the intractability of the MSPP and the impossibility of
developing a polynomial time algorithm, the experimental study indicates that the
cardinality of the Pareto set of minimal paths is typically low order polynomial for
colored-edge graphs with random uniformly distributed weights. Furthermore, the
approach can deal with networks as large as the multimodal transportation system
of France without applying any reduction technique or constraint.

Future work might deal with the development of more efficient data structures
for handling Pareto sets in colored-edge graphs. Furthermore, the impact of reduc-
tion techniques on the cardinality of M, is something worth to be investigated.
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