
Academic Editors: Yang Yue and

Sicong Liu

Received: 25 March 2025

Revised: 25 April 2025

Accepted: 30 April 2025

Published: 3 May 2025

Citation: Solís, J.; Sánchez, I.;

Azurdia-Meza, C.; Játiva, P.P.;

Zabala-Blanco, D.; Dehghan

Firoozabadi, A. Line-of-Sight

Probability Analysis of Underground

Mining Visible Light Communication

Diversity Schemes Under Random

Receiver Orientation. Sensors 2025, 25,

2890. https://doi.org/10.3390/

s25092890

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Line-of-Sight Probability Analysis of Underground Mining
Visible Light Communication Diversity Schemes Under Random
Receiver Orientation
Julián Solís 1 , Iván Sánchez 2,* , Cesar Azurdia-Meza 1 , Pablo Palacios Játiva 3 ,
David Zabala-Blanco 4 and Ali Dehghan Firoozabadi 5

1 Department of Electrical Engineering, Universidad de Chile, Santiago 8370451, Chile;
julian.solis@ug.uchile.cl (J.S.); cazurdia@ing.uchile.cl (C.A.-M.)

2 Department of Networking and Telecommunication Engineering, Universidad de las Américas,
Quito 170503, Ecuador

3 Escuela de Informática y Telecomunicaciones, Universidad Diego Portales, Santiago 8370190, Chile;
pablo.palacios@mail.udp.cl

4 Department of Computing and Industries, Universidad Católica del Maule, Talca 3466706, Chile;
dzabala@ucm.cl

5 Department of Electricity, Universidad Tecnológica Metropolitana, Av. José Pedro Alessandri 1242,
Santiago 7800002, Chile; adehghanfirouzabadi@utem.cl

* Correspondence: ivan.sanchez.salazar@udla.edu.ec

Abstract: Visible light communication (VLC) is an emerging technology that offers an alter-
native to traditional wireless communications systems. However, the technology presents
limitations related to the impact of the receiver’s orientation, which can significantly im-
pact its performance. To address this issue, VLC systems use diversity schemes, such as
transmitter and receiver diversity. In this paper, we derive an analytical expression for the
probability of maintaining a line-of-sight (LoS) link in an underground mining visible light
communication (UM-VLC) system with a receiver embedded in an object, such as a helmet,
by considering user mobility. We show that the angle of incidence depends on the distance
from the source and derive the probability accordingly for single-input single-output (SISO),
multiple-input single-output (MISO), and single-input multiple-output cases (SIMO). Our
results show that the analytical results fit with the simulated results. Furthermore, the
resulting probabilities show that the angular position of the receiver significantly affects the
channel’s quality, with the optimal position dependent on the field-of-view characteristics.
These findings can provide an appropriate framework for receiver and transmitter diversity
design through analytical expression.

Keywords: line-of-sight (LoS) link; optical diversity schemes; optimal tilt angle; underground
mining visible light communication (UM-VLC); visible light communication (VLC)

1. Introduction
Visible light communication (VLC) is an emerging technology that poses an alter-

native to traditional physical communication technologies such as radio frequency (RF)
communication. Due to its high frequency, it presents several advantages over RF com-
munication, such as resistance to electromagnetic interference, an unlicensed spectrum,
lower energy consumption, and reduced costs. The benefits come from the usage of energy-
efficient light-emitting diodes (LEDs), which are now being deployed as the primary source
of lighting.
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A relevant use case for VLC is underground mining (UM) communications [1]. Visible
light communication in underground mining (UM-VLC) is a promising solution due to
its low cost and the latent necessity of lighting inside mines [2]. Although VLC solves
many issues, such as interference and fading phenomena, highly directional propagation
harms the system’s performance. The unpredictable receiver orientation and the user’s
mobility frequently lead to a link misalignment. The misalignment of the link disrupts
communication, causing link failures. To address these outages, different studies have
studied the application of diversity techniques such as receiver diversity [3,4].

The existing proposed VLC implementations in mining environments require both mo-
bility and a variable receiver orientation, which directly impact the availability of line-of-sight
(LOS) links. Consequently, characterizing the availability of these links is a crucial element in
understanding the system’s behavior. Although the impact of the receiver orientation has been
studied extensively in the literature [5,6], research on random receiver orientations is limited
by assumptions that do not accurately represent the underground mining scenario studied.

In the context of relevant and related work, the probability of a power outage has
been studied under the case of a random transmitter orientation [7]. However, the receiver
orientation has been considered constant and orthogonal to the ground plane. In [8,9],
the power outage probability and the bit error rate for on–off keying (OOK) were studied
under a uniform and Gaussian distribution of the receiving angle. However, the transmitter
was considered orthogonal to the ground, and the distributions were not a function of the
receiver’s position. In [10], the bit error rate and the signal-to-noise ratio distribution were
considered for a case with arbitrary user positioning and an arbitrary orientation, and the
optimum tilt angle was obtained. However, the article derived the effect of a random re-
ceiver orientation from fitting a known distribution. Likewise, [11] derived the bit error rate
for DCO-OFDM with an arbitrary orientation by modeling the orientation and the channel
using a Laplace distribution. However, the user positioning was maintained as fixed in
the expression. In [12], the probability of a blockage and the probability of coverage were
obtained by studying the shadowing generated by a cylinder. However, the transmitter
was orthogonal to the ground, and the receiver was unaffected by a random orientation.

A random receiver orientation has also been studied in the context of non-orthogonal
multiple-access (NOMA) schemes for VLC [13]. However, the reception angle was modeled
using a normal distribution, which was also supposed to be independent of the radius.
The bit error rate has been studied for single-input single-output (SISO) underground
mining channels [14]. However, the receiving angle was considered to be independent of
the user’s position. Finally, the power outage probability of a hybrid RF-VLC link was
studied in a random receiver orientation [15]. However, the receiving angle was assumed
to follow a normal distribution, similarly to in the NOMA study.

In this work, we investigate the effects of the receiver orientation from the perspec-
tive of an underground mining use case in SISO, multiple-input single-output (MISO),
and single-input multiple-output (SIMO) scenarios. In particular, we investigate the case
where the random receiver orientation’s density function is determined by its position with
respect to the transmitter in a tunnel. The contributions of this paper can be summarized
as follows:

• We develop an analytical framework to obtain the LoS probability of a mobile receiver
with a random orientation given a rectangular cell for SISO, MISO, and SIMO cases.

• We obtain the closed analytical form of the LOS probability, given a uniform distribu-
tion of the receiver in the rectangular area and a uniform orientation of the user.

• We verify the analytical results through extensive simulation in all cases of interest.

The structure of this article is as follows. The MIMO-VLC model for use in under-
ground environments and the impact of LoS communication links are presented in Section 2.
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The LoS probability and the angle of incidence are derived in Section 3. The analytical
expressions of the SISO LoS probability, the SIMO LoS probability, and the MISO LoS
probability are derived in Sections 4, 5, and 6, respectively. The numerical and analytical
results are presented in Section 7. Finally, conclusions are given in Section 8.

2. MIMO Channel Model
The underground mining MIMO channel was modeled to account for multiple phe-

nomena, such as reflections caused by irregular walls, scattering effects caused by dust
particles, random shadowing caused by machinery entering the mine, and the random
tilting of both the receiver and transmitter [16,17]. The tilt of the receiver and transmitter is
defined by their corresponding azimuth angle α and elevation angle β. The geometry of
the system is depicted in Figure 1. The orientation of the receiver and the transmitter in
space is represented by their vectors:

nT
i = [cos(αT

i ) sin(βT
i ), sin(αT

i ) sin(βT
i ),− cos(βT

i )],

nR
j = [cos(αR

j ) sin(βR
j ), sin(αR

j ) sin(βR
j ), cos(βR

j )],
(1)

where αR
j and βR

j correspond to the azimuthal and elevation angles of the receiver, and αT
i

and βT
i correspond to the azimuthal and elevation angles of the transmitter.

Figure 1. Geometrical representation of the evaluated scenario, where L represents the distance
between the transmitter and the user in the XY plane and h represents the distance along the z axis.

The channel model is characterized by a matrix of N × M, where M represents multiple
transmitters and N represents multiple receivers. Each transmitter–receiver pair employs ray
tracing to generate a channel that linearly sums the LoS component, the reflective components
(NLoS), and the scattering components. The channel matrix is defined as follows:

H = HLoS + Hsca + HNLoS, (2)
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where HLoS is the LOS component, Hsca is the scattering component, and HNLoS is the
reflective component. HLoS is defined by the equation [2]

HLoS(i, j) =
(m + 1)Ap

2πdm+3
ij

(rij · nT
i )

m(rij · nR
j )G(θij)rect

(
θij

Θ

)
PijH(∆ij), (3)

where Ap represents the photodetector active area, m denotes the Lambertian order, dij

is the Euclidean distance between the receiver and the transmitter, Θ is the field of view,
and G(θij) is the gain produced by the concentrator, defined by

G(θij) =


η2

sin2(Θ)
, if θij ≤ Θ

0, else
, (4)

where η is the gain and θij is the angle between the receiver and the path between the
receiver and the transmitter. ∆ij is the dot product between nT

i and rij, and H(·) is the
Heaviside function. Finally, Pij is the shadowing probability between the photodetector and
the receiver. The shadowing probability is defined using a Poisson point process, where
the expected probability of not encountering an obstacle during a period, t, is

Pij = e−ϵE(pij
v )t, (5)

with ϵ being the intensity parameter, t the expected time, and E(pv) the expected probability
of an obstacle causing shadowing [18].

E(pij
v ) =

∫ X

0

∫ Y

0
(
∫∫

w≥2dij(xv ,yv),h≥sij(xv ,yv)
g(w, h)dwdh) f (x, y)dydx, (6)

where X and Y are the horizontal and vertical dimensions of the tunnel, w is the width of
the object, h is the height of the object, f (x, y) is the probability associated with the center
of the object, and g(w, h) is the probability associated with the dimensions of the object.
However, due to the cost of computing this equation multiple times over the simulation
duration, a closed analytical form is obtained by approximating the probability density of
the object dimensions using

E(pv) =E(E(pv|w, h))

= ∑
w,h

( ∫ X

0

∫ Y

0
1w≥2d(xv ,yv),h≥s(xv ,yv) f (x, y)dydx.

)
g(w, h).

(7)

A closed analytical form of the probability can be found in Appendix A.
The non-line-of-sight (NLoS) component is the result of multiple reflections that can

occur between the transmitter and the receiver. Hence, considering the NLoS component
results in the recursive infinite summation of all the path combinations produced by the
discrete reflectors. However, to simplify the calculation, assuming that the distance between
the walls is considerable, we can limit the sum to one iteration. This relationship can be
defined using the following equation:

HNLoS(i, j) =
(m + 1)Ap

2π ∑
w

Awρw

dm+1
iw d3

wj

(riw · n̂i)
m cos(θiw)

× (rwj · n̂w) cos(θwj)G(θwj)rect(
θwj

Θ
), (8)
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where Aw corresponds to the area of the reflector and ρw is the reflection coefficient of the
wall. Similarly to the transmitter and receiver case, the reflector is characterized by a vector,
nW

w , which is associated with a random azimuth angle, αW
w , and an elevation, βW

w , and the
distance between the reflector and the transmitter or receiver is defined by diw and dwj,
respectively. Finally, the scattering component is defined by

Hi,j
sca = lim

N→∞

N

∑
n=1

Ap(m + 1)Gn(µ)

2πD2
i−n−j

cosm(ϕi−Sn) cos(θSn−j)× rect(
θSn−j

Θ
),

where Di−n−j is the total distance covered by the rays from the transmitter to the receiver, ϕi−Sn

is the angle between the scattering and the transmitter, θSn−j is the angle between the scattering
and the receiver, and Gn(µ) is the expected value of the scattering given the parameters

Gn(µ) = ρs fsca(µ)/N. (9)

fsca = (
km

ks
pmie(µ) +

kr

ks
pray(µ)) sin(µ). (10)

pray(θs) =
3[1 + 3γ + (1 − γ) cos2(θs)]

16π(1 + 2γ)
. (11)

pmie(θs) =
1 − g2

4π

[
1

(1 + g2 − 2g cos(θs))
3
2
+

g(3 cos2 θs − 1)

0.286(1 + g2 + 0.286g)
5
2

]
. (12)

where γ, g, and f are atmospheric constants, ρs is the reflection coefficient of the particles, µ

is cos(θs), N is the number of particles, and θs is the angle of the scattering. The equations
for kr and ks are [19]

kr =
24π3

λ4Ns

(n2
s − 1)2

(n2
s + 2)2

6 + 3δ

6 − 7δ

ks = N
λ2

2π

∞

∑
n=1

(2n + 1)(|an|2 + |bn|2),

an =
Ψn(x)Ψn(mx)− mΨn(x)′Ψn(mx)

ξn(x)ξ ′n(mx)− mξ ′n(x)Ψn(mx)
,

bn =
mΨn(x)Ψ′

n(mx)− Ψ′
n(x)Ψn(mx)

mξn(x)ξ ′n(mx)− ξ ′n(x)Ψn(mx)
,

(13)

where x = 2πρ
λ , with ρ being the radius of the particles, m the refractive coefficient, δ the de-

polarization factor of air, Ns the molecular number density of air, and ns the refractive index
of air. Ψn and ξn are the Bessel function and the first kind of Hankel function, respectively.

An important metric for assessing the effect of the receiving angle is the power outage
probability. However, as will be shown in the following sections, the power outage prob-
ability cannot be obtained analytically, given the interdependence of the receiving angle
with the mobility of the user and the orientation of the receiver. However, it is possible
to obtain the LOS probability, which correlates strongly with the system’s average power.
Given a variable angle of inclination for the receiver from βr = 20◦ to βr = 70◦, Figure 2
shows the average power compared to the LoS probability.

The average power and the LoS probability are obtained by simulating the channel at
each point inside the tunnel by varying αR

j between 0 and 2π. The systems and scenario
parameters used for the simulation are presented in Tables 1 and 2. The average power is
obtained by computing the mean power of all the resulting DC channel values, and the
LoS probability is obtained by taking the number of available LoS links and dividing them
by the total number of links. The presented average power is further divided into a case
with an LoS component and a case without an LoS component. The average for the case
without an LoS component is computed by taking the mean of the DC power from all
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the corresponding phenomena within the channel bar the LoS component, even if an LoS
component is available. Since we consider all the computed channel responses, the average
power is equally conditioned by the distance between the receiver and the transmitter for
all the varying inclination values.

Figure 2. Average power from β = 20◦ to β = 70◦.

Table 1. Scenario parameters.

Parameters Scenario

Tunnel:
Length, X (m) 6
Width, Y (m) 3
Height, Z (m) 3.5

Wall reflection coefficient, ρ 0.6
Wall rotation angle, αw U [0, 180]

Wall tilt angle, βw U [0, 180]
Scatterer reflection coefficient, ρs 0.1

Number of scatterers, N 40

Transmitter:
Position 1, (x, y, z) (m) (1, 0.5, 3)
Position 1, (x, y, z) (m) (2, 0.5, 3)

Transmitter rotation angle, αi 0
Transmitter tilt angle, βi 45

Receiver:
Receiver tilt angle, αj 55

FOV, Θ 55
Radius, (m) 0.1

FOV, Θ 55◦

Shadowing:
Width probability density, gv(w) N (2, 0.5)
Height probability density, gv(h) N (1.5, 0.5)

Y probability density, fv(y) U [0, 3]
X probability density, fv(x) U [0, 5]
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Table 1. Cont.

Parameters Scenario

Resolution:
Time resolution (ns) 0.25
Area elements in X 18
Area elements in Y 18
Area elements in Z 15

Spatial resolution in X (m) 0.1
Spatial resolution in Y (m) 0.1
Spatial resolution in Z (m) 0.1

Table 2. System parameters.

Parameters Values

Absolute temperature, Tk(K) 295 [20]

Atmospheric parameter, γ 0.017 [21]

Atmospheric parameter, g 0.72 [21]

Atmospheric parameter, f 0.5 [21]

Average transmitted power, Pi(W) 1 [22]

Background dark current, Ibg (nA) 10 [20]

Band-pass filter of transmission 1 [23]

Boltzmann constant, κ(J/K) 1.38 × 10−23 [20]

Capacitance, Cpd 1.12 × 10−8 [20]

Radius area, Rr 1 [24]

Electronic charge, q(C) 1.6 × 10−19 [20]

FET channel noise factor, Γ 1.5 [20]

FET trans-conductance, gm(S) 0.03 [20]

Optical gain, g()̇ 1 [25]

Lambertian mode number, m 1 [21]

Mie scattering coefficient, km U [0, 10] [21]

Noise bandwidth factor, I2 0.562 [20]

Noise bandwidth factor, I3 0.0868 [20]

Open-loop voltage gain, G 10 [20]

Physical active area, Ap(cm2) 1 [23]

Rayleigh scattering coefficient, kr U [0.01, 0.1] [24]

Refractive index, η 1.5 [23]

Responsivity, RPD(A/W) 0.53 [23]

Half-power semi-angle, Φ1/2 60 [26]

Mie’s density, N 2 × 106 [27]

Wavelength, λ 500 [nm] [27]

Particle size, ρ 1 × 10−5 [m] [27]

Refractive coefficient, m 1.5 + j0.0014

Rayleigh’s density, Ns 2.547 × 1019 [28]

Depolarization factor, δ 2.547 × 10−19 [28]
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The figure shows that the LoS probability and the average power in the tunnel are
directly correlated when the LoS component is taken into account. Indeed, the correlation
between the Los probability and the average power is r = 0.9934. Based on this, we can
conclude that obtaining a metric for the LoS probability given the present scenario would
help predict the performance according to other metrics such as the power and optimize
for the optimal angle.

3. Line-of-Sight Probability
The LoS probability is the probability that the receiver and the transmitter send data to

each other using the LoS channel. To satisfy this condition, the gain from the concentrator
must be greater than 0. The condition is satisfied as long as the reception angle is less than
the total field of view. So, the probability is

P(Line-of-Sight Probability) = P(θij ≤ Θ), (14)

where θij can be defined by the inverse cosine:

θij = cos−1(
nij · nR

j

||nij||2
), (15)

and || · || is the Euclidean norm, and nij is the vector from the transmitter to the receiver,
which is

nij =


L cos(θ) + r cos(αR

j ) sin(βR
j )

−L sin(θ) + r sin(αR
j ) sin(βR

j )

h + r cos(βR
j )

. (16)

where r is the radius of the sphere around the receiver that parameterizes the position of
the receiver, L is the distance from the transmitter to the receiver in the X–Y plane, and h is
the height difference between the transmitter and the receiver.

Unlike in the orthogonal case (βR
j = 0◦), the tilt produced by α and β involves a

non-circular area of possible transmitter positions, which depends on the angle α. Since the
azimuth angle changes with the rotations of the receiver, the probability of reception given
a certain coordinate of the center of the receiver is a function of the radius L. The density
probability function of the receiving angle is as follows:

fθ(L) =
1

2π

sin(θ)
√

L2 + h2 + r2 + 2hr cos(β)√
L2 sin2(β)− (

√
L2 + h2 + r2 + 2hr cos(β) cos(θ)− h cos(β)− r)2

. (17)

As using the probability density function has an important difference to the orthogonal
case, the analysis of the system changes. Since L is not deterministic, the value of the
function changes with respect to the probability given by the mobility of the user, and the
power will depend on both α and L. To illustrate the difference between both systems,
Figure 3 shows the set of transmitters with their LoS probability for the orthogonal case
(β = 0) and the non-orthogonal case (β = 45◦, α = 45◦). The receiver is positioned at
[1, 1, 1.8], which is represented by the red dot in both figures. The geometry of both cases
shows the reason behind the complexity of obtaining the LoS probability. In the orthogonal
case, the probability can be calculated by taking the indicator function over the area of
potential transmitters. However, in the studied case, each coordinate will have an LoS
probability that can be understood as the integration over the realization of rotating the
receiver around itself. In that case, points closer to the origin will still have a probability of
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one, as they will always have the link in each rotation, but points far from the receiver will
be visited with less frequency.

Figure 3. Orthogonal case for Θ = 45◦ with β = 0◦ on the left and β = 45◦ on the right.

4. SISO LoS Probability
The LoS probability can be obtained using Equation (14) by combining θij and applying

cosine to both sides. Since θij belongs to the interval [0, π], the cosine is monotonically
decreasing. The consistent decline enables us to express Equation (14) by utilizing

P(In FOV) = P(θij ≤ Θ) + P(2π − θij ≤ 2π − Θ)

= 2P(cos(θij) ≥ cos(Θ))

= 2P(
nijnR

j

||nij||2
≥ cos(Θ)),

(18)

where cos(θij) = cos(2π − θij) due to the parity of the cosine function.
The left argument of the probability is obtained using the definitions of nij and nR

j .
The resulting expressions for the norm and the dot product are

||nij||2 =
√

L2 + r2 + h2 + 2hr cos(β) + 2rL(cos(θ) cos(α) sin(β)− sin(θ) sin(α) sin(β))

≈
√

L2 + r2 + h2 + 2hr cos(β),

nijn̂j = L cos(θ) cos(α) sin(β)− L sin(θ) sin(α) sin(β) + r + h cos(β)

= L sin(β) cos(α + θ) + r + h cos(β),

(19)

where the approximation of the norm holds as long as r is significantly smaller than both h
and L. Using both expressions, we can rewrite the probability as

2P(θij ≤ Θ) = 2P(cos(α + θ) ≥ cos(Θ)
√

L2 + r2 + h2 + 2hr cos(β)− r − h cos(β)

L sin(β)
),

P(θij ≤ Θ) = P(α ≤ cos−1(
cos(Θ)

√
L2 + r2 + h2 + 2hr cos(β)− r − h cos(β)

L sin(β)
)− θ).

(20)

The above equation has three random variables, which dictate the position of the
receiver, determined by θ and L, and the orientation of the receiver, which is determined
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by α. Since the receiver’s orientation is assumed to be independent of its position, we can
obtain the expected LOS probability using the following equation:

EL,θ(P(FOV|L, θ)) =
∫

L,θ
(2P(θij ≤ Θ|L, θ) fL,θ)dLdθ,

P(θij ≤ Θ|L, θ) =
∫ cos−1(

cos(Θ)
√

L2+r2+h2+2hr cos(β)−r−h cos(β)

L sin(β)
)

0
fα(α)dα,

(21)

where fα is the probability density function of the receiver’s orientation, assumed to be
uniform within the interval [0, 2π], and fL,θ is the probability density function of the
receiver’s position, assumed to be uniform too. Due to the use of the radius and the angle,
and given the rectangular boundaries of the system, the spatial density function has to be
rewritten to

f 2n+1
r,θ (r, θ) =


2r

(∆Dn//2)2 tan(θn
cr)

1
r≤ ∆Xn//2

cos(θ′)
P(S2n+1), if n (mod 2) = 0

2r
(∆Yn//2)2 tan(θn

cr)
1

r≤ ∆Yn//2
cos(θ′)

P(S2n+1), if n (mod 2) = 1
, (22)

f 2n
r,θ (r, θ) =


2r

(∆Yn//2)2 cot(θn
cr)

1
r≤ ∆Yn//2

sin(θ′)
P(S2n), if n (mod 2) = 0

2r
(∆Dn//2)2 cot(θn

cr)
1

r≤ ∆Xn//2
sin(θ′)

P(S2n), if n (mod 2) = 1
, (23)

where n is an index from 1 to 8 that represents the different triangular partitions of the
corresponding rectangle. The resulting integral is the equation

∫
α

p(θij ≤ Θ|L, θ) =
∫ cos−1( cos(Θ)

√
L2+b2−a

L sin(β)
)

0
2

1
2π

dα

=


0, if cos(Θ)

√
L2+b2−a

L sin(β)
≥ 1

1, if cos(Θ)
√

L2+b2−a
L sin(β)

≤ −1
1
π cos−1( cos(Θ)

√
L2+b2−a

L sin(β)
), else,

(24)

where b =
√

r2 + h2 + 2hr cos(β) and a = r + h cos(β).
The inverse cosine can be approximated by using an odd number of linear approxima-

tions that are symmetric to the center. Each linear approximation will be associated with
a slope, ak, and an offset, bk. Linear approximations represent an interval of the function.
These intervals can be found by solving the following expression:

cos(Θ)
√

L2 + b2 − a
L sin(β)

≷ k j. (25)

The orientation of the inequality depends on the sign of cos(Θ)
√

L2 + b2 − a. If the
sign is positive, then the thresholds k j represent either the lower bound from [−∞, Lo]

or the upper bounds from [Lo, ∞], where Lo represents the minimum of the function if it
exists. If the sign is negative, then the thresholds represent the upper bound. Because of its
quadratic form, the equation can have zero to two feasible solutions over zero that follow
the following solution:

Lkj
=


ka sin(β)±

√
k2a2 sin2(β)−(cos2(Θ)−k sin2(β))(b2 cos2(Θ)−a2)

cos2(Θ)−k sin2(β)
, cos2(Θ)− k sin2(β) ̸= 0

−(cos2(Θ)b2−a2

2ka sin(β))
, cos2(Θ)− k sin2(β) = 0.

(26)
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The intervals are generated depending on the number of solutions. If Lkj
has zero

solutions and Lkj−1
has a solution, then k j is valid in the interval [Lkj−1

,+∞]. If Lkj−1
has

zero solutions, then k j is skipped. If Lkj
has one solution, then k j is valid in the interval

[Lkj−1
, Lkj

]. If it has two positive solutions, then k j is valid in the interval [L1
kj

, L1
kj−1

] and the

interval [L2
kj−1

, L2
kj
].

Using the solutions, we can form a succession of solutions such that the nth element of
the solution is associated with some kn constant that corresponds to the approximation from
Ln to Ln+1, the values of which depend on the solutions for the previous equation. Using
this sequence, we can rewrite the integral as the sum of the intervals that are associated with
each kn over the sum of the different triangles that compose the probability distribution.
The resulting equation is

E(P(θij ≤ Θ)) =
M

∑
m=1

4

∑
n=1

∫ θn
cr

(n−1) π
2

∫ Lm

Lm−1

gm(L, θ) f 2n+1
L,θ dLdθ +

∫ n π
2

θn
cr

∫ Lm

Lm−1

gm(L, θ) f 2n
L,θdLdθ.

gm(L, θ) =
am

π
cos−1(

cos(Θ)
√

L2 + b2 − a
L sin(β)

) +
bm

π

g1(L, θ) = 1cos(Θ)
√

L2+b2−a<0

(27)

The integral can be divided into the 2n and 2n + 1 cases, assuming that g1(L, θ)

is equivalent to having a1 = 0 and b1 = 1cos(Θ)
√

L2+b2−a<0. Furthermore, the 2n case
corresponds to the density functions of the tangent denominator, while the 2n + 1 case
corresponds to the density functions of the cotangent denominator. For the 2n + 1 case,
the integral is

I2n+1,m =
∫

L,θ
cos−1(

cos(Θ)
√

L2 + b2 − a
L sin(β)

) f 2n+1
L,θ dLdθ =

∫ θn
cr

f2n+1((n−1) π
2 ,Lm−1,θn

cr)

∫ Lm

Lm−1

[
am(

cos(Θ)
√

L2 + b2 − a
L sin(β)

) + bm

]
2L

(∆Xn)2 tan(θn
cr)

1r≤ ∆Xn
cos(θ′)

P(S2n+1)dLdθ.

(28)

with ∆Xn = ∆Dn//21mod(n,2)=0 + ∆Yn//21mod(n,2)=1. The function f ((n − 1)π
2 , Lm−1) obeys

f2n+1((n − 1)
π

2
, Lm−1, θn

cr) = min(tan−1(
∆Xn

Lm−1
) + (n − 1)

π

2
, θn

cr), (29)

For the purpose of notation, it will be called θ
Lm−1
n .

The integral solution consists of the following equations:

I2n+1,m = I2n+1,m,11Lm<∆Xn + I2n+1,m,21Lm> ∆Xn
cos(θn

cr)
+ I2n+1,m,31Lm>∆Xn 1Lm< ∆Xn

cos(θn
cr)

,

I2n+1,m,3 = I2n+1,m,1(θ̄, θn
cr) + I2n+1,m,2(θ

Lm−1
n , θ̄)

θ̄ = cos−1(
∆Xn

Lm
),

(30)

where I2n+1,m,1 integrates an interval completely inside the rectangular boundary, I2n+1,m,2

integrates an interval where the upper bound is completely outside of the rectangular
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boundary for every angle, and I2n+1,m,3 integrates an interval where θ̄ defines whether the
upper boundary is inside or outside of the boundary. The subterm I2n+1,m,1 is

I2n+1,m,1 =
2P(S2n+1)

(∆Xn)2 tan(θn
cr)

(θn
cr − θ

Lm−1
n )(Λm(Lm)− Λm(Lm−1))

Λm(L) = ak(
cos(Θ)

sin(β)

1
2
(Lm

√
L2

m + b2 + b2ln(
√

L2
m + b2 + Lm)−

a
sin(β)

Lm)+

bm

2
L2

m.

(31)

The subterm I2n+1,m,2, with σn = ∆Xn
b , is given in Appendix B.

The integral of the even case follows the following equations:

I2n,m = I2n,m,11Lm<∆Xn + I2n,m,21Lm> ∆Xn
sin(θn

cr)
+ I2n,m,31Lm>∆Xn 1Lm< ∆Xn

sin(θn
cr)

,

I2n+1,m,3 = I2n,m,2(θ̄, θn
cr) + I2n,m,1(θ

Lm−1
n , θ̄)

θ̄ = sin−1(
∆Xn

Lm
),

(32)

where the subterm I2n+1,m,1 is

I2n,m,1 =
2P(S2n+1)

(∆Xn)2 cot(θn
cr)

(θn
cr − θ

Lm−1
n )(Λm(Lm)− Λm(Lm−1))

Λm(L) = ak(
cos(Θ)

sin(β)

1
2
(Lm

√
L2

m + b2 + b2ln(
√

L2
m + b2 + Lm)−

a
sin(β)

Lm)+

bm

2
L2

m,

(33)

and the subterm I2n,m,2 is given in Appendix B.

5. SIMO LoS Probability
The single-input multiple-output case includes Nr receivers with an angular offset, αj,

such as α0 = 0. Let us call α′j the sum of the probabilistic α and the offset. The dot product
between nij and nj will be

nijn̂j = L cos(θ) cos(α′) sin(β)− L sin(θ) sin(α′) sin(β) + r + h cos(β)

= L sin(β) cos(α′ + θ) + r + h cos(β).

α′ = α + ᾱ

(34)

Obtaining the probability of nt receivers communicating during the same period
involves intersecting the intervals produced by each α′j. The intervals produced by each α′j
are in the form of

α ∈ [− cos−1(u0(L, θ))− αj, cos−1(u0(L, θ))− αj], (35)

where u0(L, θ) is the argument of the inverse, or

u0(L, θ) =
cos(Θ)

√
L2 + r2 + h2 + 2hr cos(β)− r − h cos(β)

L sin(β)
. (36)
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Since α ∈ [−π, π] and the arguments of the intervals mentioned previously can exist
outside of the interval, to solve this, we introduce the following transformation:

α−j = (− cos−1(u0(L, θ))− αj + π) (mod 2π)− π,

α+j = cos−1(u0(L, θ))− αj + π (mod 2π)− π.
(37)

To obtain the points where the modulus cycles back to 0 or 2π, we need to find the
solutions to the equation

u0(Lj, θ) = cos(αj), (38)

with Lj being the solution to the equation. The equation has zero to two solutions. The pos-
sible cases are the following:

• If the equation has zero solutions, then the argument of the modulus either belongs to
[−π, π] or is always below the interval. If αj ≤ π, then it is the former; if αj ≥ π, then
it is the latter.

• If the equation has one solution, then it is either from the upper bound or the lower
bound. If αj ≤ π, then it is the former; if αj ≥ π, then it is the latter.

• If the equation has two solutions, then one of the bounds oscillates around −π.
If αj ≤ π, then it goes below π from L1

j to L2
j ; if αj ≥ π, then it goes above π from L1

j

to L2
j .

Without the loss of generality, the solution is always a pair, L1
j and L2

j , where L1
j ≤ L2

j .

If there are one or fewer solutions, then L1
j goes to −∞. If there are zero solutions, then L2

j
goes to −∞ too. Then, the intervals can be generalized using

α ∈ [− cos−1(u0(L, θ))− αj, cos−1(u0(L, θ))− αj], αj ≤ π, L ≤ L1
j

α ∈ [−π, cos−1(u0(L, θ))− αj] ∪ [− cos−1(u0(L, θ))− α2π
j , π], αj ≤ π, L1

j ≤ L ≤ L2
j

α ∈ [− cos−1(u0(L, θ))− αj, cos−1(u0(L, θ))− αj], αj ≤ π, L2
j ≤ L

α ∈ [cos−1(u0(L, θ))− α2π
j ,− cos−1(u0(L, θ))− α2π

j ], αj ≥ π, L ≤ L1
j

α ∈ [−π, cos−1(u0(L, θ))− αj] ∪ [− cos−1(u0(L, θ))− α2π
j , π], αj ≥ π, L1

j ≤ L ≤ L2
j

α ∈ [− cos−1(u0(L, θ))− α2π
j , cos−1(u0(L, θ))− α2π

j ], αj ≥ π, L2
j ≤ L

(39)

where α2π
j = 2π − αj.

Similarly to in the SISO case, we can form a succession of distances to the center such
that the nth element of the sequence corresponds to an interval, Ln−1 to Ln, such that
both Ln−1 and Ln are solutions for some pair of receivers. Let us assume that the first M
receivers have non-divergent interval solutions, where M0 corresponds to those which
are not subject to a modulus and M1 to those which are. Finally, the last N receivers have
divergent interval solutions, which means that their lower bounds have a modulus applied
to them. If N > 0, then the resulting intervals are

α ∈ [− cos−1(u0(L, θ))− αn,1, cos−1(u0(L, θ))− αn,2]

∪ [− cos−1(u0(L, θ))− αn,3, cos−1(u0(L, θ))− αn,4]

αn,1 = min(α0, ..αM0 , αM0+1 − 2π, ..., αM1 − 2π)

αn,2 = max(α0, ..., αM+N − 2π)

αn,3 = min(α0, ..., αM+N − 2π)

αn,4 = max(α0, ..αM0 , αM0+1 − 2π, ..., αM1 − 2π)

(40)



Sensors 2025, 25, 2890 14 of 34

Since α0 is 0, M ≥ 1. For the union to be between two non-intersecting intervals,
the condition cos−1(u0(L, θ)) ≤ αn,3−αn,2

2 must be satisfied, which is always true given the
fact that the α associated with the minimum in αn,3 is always bigger than α associated with
the maximum in αn,2. If N = 0, then

α ∈ [− cos−1(u0(L, θ))− αn,1, cos−1(u0(L, θ))− αn,2]

αn,1 = min(α0, ..αM0 , αM0+1 − 2π, ..., αM1 − 2π)

αn,2 = max(α0, ..αM0 , αM0+1 − 2π, ..., αM1 − 2π)

(41)

Using the succession of intervals χ, we can compute the integral by using the sum

E(P(θi1 ≤ Θ, ..., θi,Nt ≤ Θ)) =

|χ|

∑
n=1

M

∑
m=1

4

∑
l=1

∫ θl
cr

(l−1)π

∫ Lm

Lm−1

[
(gm(L, θ) +

αn,2 − αn,1

π
)1cos−1(u0(L,θ))≥0.5(αn,2−αn,1))

+ (gm(L, θ) +
αn,4 − αn,3

π
)1cos−1(u0(L,θ)≥0.5(αn,4−αn,3)

1Nbr>0

]
1L<Ln ,L>Ln−1 f 2l+1

L,θ dLdθ+∫ lπ

θl
cr

∫ Lm

Lm−1

[
(gm(L, θ) +

αn,2 − αn,1

π
)1cos−1(u0(L,θ))≥0.5(αn,2−αn,1))

(gm(L, θ) +
αn,4 − αn,3

π
)1cos−1(u0(L,θ)≥0.5(αn,4−αn,3)

1Nbr>0

]
1L<Ln ,L>Ln−1 f 2l

L,θdLdθ.

(42)

with Nbr being the number of receivers that have disjoint intervals of α. The inequality
cos−1(u0(L, θ)) ≥ 0.5(αn,k − αn,k−1)) has zero to two solutions and can be trivially solved
within each interval, n. The solution to the integral of each αn,k is equivalent to the integral
of g1(L, θ) multiplied by αn,k.

6. MISO LOS Probability
For the MISO case, we assume that the nth transmitter is at a distance, di, from the first

transmitter, with an angle of ϕi. The general formula for the dot product between nij and
nj is

nijn̂j = (L + d cos(ϕi)) cos(θ) cos(α) sin(β) + (L + d sin(ϕi)) sin(θ) sin(α) sin(β) + r + h cos(β) (43)

To simplify the expression, we use ϕi = 0. The case with ϕi ̸= 0 has a similar solution
but was not evaluated. If ϕi = 0, then the norm and the dot product are

nijn̂j =
√

L2 + d2 + 2dL cos(θ) sin(β) cos(α + tan−1
(

L sin(θ)
L cos(θ) + d cos(ϕi)

)
) + r + h cos(β), (44)

||nij|| =
[

L2 + r2 + d2 + h2 + 2dL cos(θ) + 2hr cos(β) + 2rd cos(α) sin(β) (45)

+ 2rL(cos(α) sin(β) sin(α) sin(β)))

]1/2

(46)

≈
√

L2 + d2 + 2dL cos(θ) + r2 + h2 + 2hr cos(β). (47)

Since both the denominator and the numerator depend on θ, the solutions for the
intervals, inverse cosine approximations, and modulus depend on θ. To address the
dependency on θ, we use small ∆θ steps to integrate and solve the approximations and
modulus equations. The rate of change dependent on θ allows for nearly constant solutions
in a certain θ interval. When we integrate small variances of θ, the sectors being integrated
have their own probability density, which is
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f ∆θl
L,θ =

2L
∆θl R∆θl

(48)

R∆θl =
4

∑
n=1

∆X2n+1
n//2

tan(θ−l − (n − 1)π)
1θ−l <θn

cr ,θ−l −(n−1)π)>0 +
∆X2n

n//2

cot( nπ
2 − θ+l )

1θ+l >θn
cr , nπ

2 −θ+l < π
2

, (49)

where θ−l corresponds to the lower bound of the interval and θ+l to the upper bound of the
interval. ∆Xk

n corresponds to either ∆Dn//2 or ∆Yn//2, while k refers to either the odd or
even case. Using these intervals, we can rewrite the integral as

Itot =
1
A

Nl

∑
l=1

P(θ1j ≤ Θ, ..., θNt j ≤ Θ|θ ∈ [θ−l , θ+l ]), (50)

A =
Nl

∑
l=1

0.5∆θl R2
∆θl

. (51)

The corresponding intervals generated for α are

α ∈
[
− cos−1(udi

(L, θ))− tan−1

(
L sin(α)

L cos(α) + di

)
, cos−1(udi

(L, θ))− tan−1

(
L sin(α)

L cos(α) + di

)]
, (52)

udi
(L, θ) =

cos(Θ)
√

L2 + d2 + 2dL cos(θ) + b2 − a√
L2 + d2 + 2dL cos(θ) sin(β)

. (53)

The interval shows that the modulus equations depend on θ. In the case of the
threshold equations, they can be solved in a straightforward manner using the solutions
given by the solutions for the d = 0 case. Using these solutions, we can derive zero to
four solutions for the threshold using

L∆θi
m = −d cos(θavg

i )±
√

d cos(θavg
i ) + d2 − L2

k , (54)

θ
avg
i = θ−i + 0.5∆θi. (55)

Since the solutions are centered around −d cos(θavg
i ), we can use a similar method to

generate the sequence for the case with d = 0, using the reverse methodology for the case
where L < −d cos(θavg

i ). The new modulus breakpoints are

k1 = cos2(Θ)− sin2(β) cos2(θ
avg
l )

k2 = (2di cos(Θ) + 2a sin(β)− 2di sin2(β)) cos(θavg
l )

k3 = d2
i cos2(Θ) cos2(thetaavg

l ) + cos2(Θ)(b2 + d2
i + d2

i sin2(θ
avg
l ))−

d2
i sin2(β)− a2 + 2adi sin(β)

B1,i,l =
k2 −

√
k2

2 − 4k1k2

2k1

B2,i,l =
k2 +

√
k2

2 − 4k1k2

2k1

(56)

Unlike in the SIMO case, the arrangement of the intervals does not follow a straight-
forward set of equations, as they are dependent on the corresponding phase which varies
with both the distance L and the angle θ

avg
i , which makes it possible, for example, that B1,i,l

corresponds to a solution in the upper bound and B2,i,l corresponds to a solution in the
lower bound.
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Since tan−1(x) is injective from −π
2 to π

2 , the function does not behave as desired
between π

2 and 3π
2 . A solution to this is to patch the function using the following equation:

θdi
(L, α) = tan−1

(
L sin(α)

L cos(α) + di

)
+ π(1θ

avg
i ∈[ π

2 , 3π
2 ],L≥−d cos(θavg

i ),di≥0 + 1L≥−d cos(θavg
i ),di≤0). (57)

Since we are assuming that all transmitters are on the same axis, we can assume that
d1 = 0 and dn ≥ d1. Using this condition, we can divide the interval formation for a single
transmitter in four cases depending on θ

avg
i . It is also relevant to note that the breaking

points, given the new equation, have up to four solutions. We use B−
1,i,l , B−

2,i,l for the cases
where L is below the patching and B+

1,i,l , B+
2,i,l for the cases where L is above the patching.

The solutions for the cases above and below the patching are in Appendix D.
Similarly to in the SIMO case, the resulting intervals have to be intersected to obtain

the integrating intervals. Unlike in the SIMO case, the solution for the intersection does
not have a closed, exact analytical solution. The equation can be solved using piecewise
approximations or numerical methods. In this paper, we use the Newton–Raphson method
to obtain both the minimum and maximum for each interval. A pair has a maximum of
two real solutions, as the inverse of the tangent monotonically increases and the inverse
cosine is either monotonically increasing on the positive side or has a single minimum.
Thus, we can use both sides of the interval as starting points to obtain either zero, one, or
two solutions. Given an interval from Lp+1 to Lp of a set, p, such that every approximation
of the inverse cosine is constant and no equation, g+di

, g−di
, crosses π or −π, the resulting

intervals are

α ∈
∞⋃

i=1

[g−i11L∈[Li−1,Li ]
, g+i21L∈[Li−1,Li ]

] ∪ [g−i31L∈[Li−1,Li ]
, g+i41L∈[Li−1,Li ]

]

gi1 = max(g−d1
, ..., g−dM

,−π), L ∈ [Li−1, Li]

gi2 = min(g+d1
, ..., g+dM+N

), L ∈ [Li−1, Li]

gi3 = max(g−d1
, ..., g−dM+N

), L ∈ [Li−1, Li]

gi4 = min(g+d1
, ..., g+dM

, π), L ∈ [Li−1, Li]

(58)

with M being the intervals that are continuous between −π and π and N the intervals
that are not continuous. Unlike in the SIMO case, M can be zero under certain conditions.
In this case, we define gi1 and gi4 as −π and π, respectively.

Using the succession of intervals χ corresponding to the intersections generated by
the modulus equation, we obtain the expected probability as

E(P(θ1j ≤ Θ, ..., θNr ,j ≤ Θ)) =
|χ|

∑
n=1

Pn

∑
p=1

M

∑
m=1

[ ∫ (m+1)∆θ

m∆θ

∫ Lmax

0

[
(gp2 − gp1)1L∈[Lp−1,Lp ]

+ (gp4 − gp3)1L∈[Lp−1,Lp ])

]
f (m+0.5)∆θ
L,θ dLdθ

]
1

2π
dα

(59)

where M corresponds to the number of divisions. The solution of the integral for each
bound is
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∫
θ

∫
L

∫
α

gip

2π
f ∆θm
L,θ dLdθdα =

1
2π∆θmR∆θm

∫
θ

∫
L

∫
α

2L(cos−1(udip
(L, θ))−

tan−1(
L sin(α)

L cos(α) + dip
)dθdLdα.

=
1

2π∆θmR∆θm

∫
θ

∫
L

∫
α

2L

( aip

sin β

cos(Θ)
√

u2
ip + b2 − a

uip
+ bip − tan−1(

L sin(α)
L cos(α) + dip

)

)
dθdLdα.

=
1

2π∆θmR∆θm

∫
θ

∫
L

∫
α

Aip + Bip − TipdθdLdα

(60)

where Aip corresponds to the terms associated with the coefficient aip and Bip to those
associated with the constant bip, and Tip is the integral of the inverse tangent. The integral
of Aip can be approximated using first-order approximations of the square root, which
results in

Aip ≈
∫ (m+1)∆θ

m∆θ

∫ Lp

Lp−1

(
aip

sin(β)
(cos(Θ)((1 +

b2

2u2
ip
)1uip>b

+ b(
1

uip
+

uip

2b2 1uip<b)−
a

uip
))LdLdθ

= A1
ip + A2

ip − A3
ip,

(61)

where the resulting expression is in Appendix C.
The expression for the integral of Bip is

Bip = 0.5(L2
p − L2

p−1)∆θ (62)

On the other hand, the inverse tangent integral does not have a simple primitive when
integrating by θ. Exploiting the fact that θ uses small steps, we linearize the inverse tangent
around (m + 0.5)∆θ. The resulting value is

TL,θ,ϕ
ip =

L2

2
(tan−1(

L sin(ϕ)
L cos(ϕ) + dip

)θi +
Ldip cos(ϕ) + d2

ip

L2 + d2
ip + 2dipL cos(ϕ)

(
θ2

2
− ϕθ))

+
d2

ip

2
(
(sin(2θ)

2
(tan−1(

dip sin(ϕ)
d cos(ϕ) + L)

−
Ldip cos(ϕ) + L2

L2 + d2
ip + 2dipL cos(ϕ)

ϕ)

+
Ldip cos(ϕ) + L2

L2 + d2
ip + 2dipL cos(ϕ)

(θ
sin(2θ)

2
+

cos(2θ)

4
) +

Ldip

2
cos(θ)+

d2
ip

2
((− ln(L2 + d2

ip) + 1 − ln(2))
cos(2θ)

4
−

∞

∑
n=1

(
2Ldip

L2 + d2
ip
)n(−1)n+1 cosn+2(θ)

n(n + 2)
)

Tip = T
Lp ,(m+1)∆θ,(m+0.5)∆θ

ip + T
Lp−1,m∆θ,(m+0.5)∆θ

ip − T
Lp ,m∆θ,(m+0.5)∆θ

ip −

T
Lp−1,(m+1)∆θ,(m+0.5)∆θ

ip

(63)

7. Results and Discussions
In this section, we present the numerical results for the LOS probability for each case.

In each case, the user moves through a tunnel with a length of X = 5[m] and a width of
Y = 3[m], and the main LED is placed at [1, 1, 3]. The radius of the helmet is considered
to be r = 0.05[m], and the height of the user is 1.8[m], so h is 1.2[m]. We computed the
simulated results using Monte Carlo sampling over the user position and orientation, which
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allowed us to obtain the receiving angle and compare it with the FOV. We obtained the
results using a variable β for each FOV Θ, since a higher field of view would trivially imply
a higher LoS probability. Figure 4 shows the methodology used to obtain the simulated
and analytical results.

Figure 4. Flow chart of the methodology used to obtain the simulated and analytical results.

7.1. SISO Case

In Figure 5, the SISO LOS probability is depicted for any position of the user. In this
case, we took Θ = 30 and β = 45 to illustrate the effect of the position of the user on
the LOS probability. The figure shows that the LOS probability was 0 around the LED,
which was a product of the value of β, which oriented the receiver away from the source.
However, if we set β = 20, as shown in Figure 6, the LOS probability rapidly decayed with
respect to the radius. This behavior created a trade-off in the orientation, where orientations
closer to the orthogonal case could be suboptimal in certain setups.
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Figure 5. SISO LOS probability with Θ = 30 and β = 45.

Figure 6. SISO LOS probability with Θ = 30 and β = 20.

In Figure 7, the analytical SISO case is compared with the simulated case. As can be
seen, the analytical case matched perfectly with the simulated data, with an error of 1.15%.
Evidently, the LoS probability increased monotonously with respect to the FOV. However,
each FOV had an optimal elevation angle, which decreased with the FOV. The optimal
value was not only a product of β but also a product of h and r. A higher h increased the
probability, with the cost of a higher path loss. For example, in the case of an FOV of 30◦,
increasing the height difference from 1.2[m] to 1.6[m] increased the LoS probability by 0.04,
or 7%.
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Figure 7. Analytical and simulated SISO LOS probabilities.

7.2. SIMO Case

In Figure 8, the SIMO LOS probability is depicted for any position of the user. To reduce
the complexity of the problem, we obtained the results using two receivers. In this case,
we took an FOV of Θ = 30, an elevation of β = 45, and a displacement of α1 = 90 to
illustrate the effect of the user position on the LoS probability. The figure shows that the LOS
probability was 0 around the LED, which was a product of the value of β, which oriented
both receivers away from the source. We could also observe that the LOS probability
decayed faster than in the SISO case with a similar setup, which demonstrates its sensitivity
to an orientation away from the source. If we set β = 20, as shown in Figure 9, the LOS
probability rapidly decayed with respect to the radius. However, the reduction in the total
LOS probability was comparatively not as strong as in the SISO case, which was explained
by the lack of coverage in the outer areas of the cell for the β = 45 case.

Figure 8. SISO LOS probability with Θ = 30, β = 45, and α1 = 90.
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Figure 9. SISO LOS probability with Θ = 30, β = 20, and α1 = 90.

Figure 10 compares the analytical results with the simulated results for the SIMO case.
As can be seen, the analytical results matched well with the simulated results. The small
error with a higher FOV was a product of the effect of the approximations of the inverse
cosine function. The total error was 2.32%. Unlike in the SISO case, the LOS probability
was rather constant with low elevation angles until it started falling off from the same peak
as in the SISO case. This effect can be attributed to the faster fall in the LoS probability with
respect to the radius. As the effect was a product of the decay near the borders, placing the
transmitter closer to the center would heavily improve the LOS probability inside the cell
for higher elevation angles while not impacting the lower elevation angles. In the calculated
scenario, moving the transmitter from [1, 1] to [1, 1.5] improved the LoS probability from 0.095
to 0.103 in cases with a high elevation angle, corresponding to an increase of 3%. Similarly to
in the SISO case, the optimal elevation was a factor of both the elevation and height. Increasing
the height difference from 1.2[m] to 1.6[m] increased the probability by 0.45, or 11%.

Figure 10. Analytical and simulated SIMO LOS probabilities with α1 = 90.
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7.3. MISO Case

In Figure 11, the MISO LoS probability is depicted for any position of the user. To reduce
the complexity of the problem, we obtained the results using two transmitters. In this case,
we took an FOV of Θ = 30 and an elevation of β = 45 and used two transmitters that
were d = 1[m] from each other. The figure shows that the LOS probability was 0 around
both LEDs, which was the product of combining the effect of the value of β orienting both
receivers away from one of the sources and the orientation being exclusively towards one of
the transmitters. We could also observe that the LOS probability had a maximum at the sides
of the transmitter, creating two lobes that decreased with respect to the radius, which was an
important difference compared to the circular contours obtained in the SIMO and SISO cases.
If we set β = 20, as shown in Figure 12, the LOS probability had the same symmetric shape,
but the maximum probability was obtained between the LEDs. In the MISO case, the change
in the LOS probability due to the elevation was significant. However, a reduced simultaneous
LOS probability can be advantageous, depending on the desired properties of the system.

Figure 11. MISO LOS probability with Θ = 30, β = 45, and d = 1.

Figure 12. MISO LOS probability with Θ = 30, β = 20, and d = 1.
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Figure 13 compares the analytical results with the simulated results for the SIMO case.
As can be seen, the analytical results matched well with the simulated results. The small
error with a lower FOV was a product of the effect of the approximations of the argument
of the inverse cosine function. The total error was 2.52%. Similarly to in the SISO case,
the LOS probability had a clear maximum dependent on the FOV. The peak coincided
approximately with that in the SISO case, but it depended on both d and h. The MISO
probability followed similar behavior to the SISO probability because the former can be
understood as the intersection of the latter, while the SIMO probability followed different
behavior given the reduced effect of the relative orientation.

Figure 13. Analytical and simulated MISO LOS probabilities with d = 1.

8. Conclusions
In this paper, we obtained a generalized analytical expression for the LOS probability

for SISO, SIMO, and MISO cases when the probability density function of the reception
angle was a function of the receiver’s geometry and the user’s mobility. The expressions
showed a close alignment between the simulation and analytical results, with slight er-
rors produced by the approximations necessary to obtain an analytical integration form.
The error of the analytical expression was 1.15%, 2.32%, and 2.52% for the SISO, SIMO,
and MISO cases, respectively. We studied the effect of the receiver’s angular elevation with
a constant FOV, which showed that an optimal elevation existed for each FOV. Furthermore,
the optimality of this angular elevation was not preserved from the SISO case to the SIMO
or MISO cases. The effect of the height on the LoS probability was also obtained, showing
that higher height differences increased the LoS probability. Finally, the resulting analytical
expressions are a representative approach to the application of the underground mining
proposal, showing predictive power to optimize the channel with respect to the geometrical
elements inside it.

The SIMO and MISO analytical expressions can be expanded to an MIMO case, which
can be performed in future work. Furthermore, future work will involve a comparison
between different communication schemes and prove the improvements in an experimen-
tal setup.
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Appendix A
The integral that defines the probability of pv can be described by the following expression:

E(pv) =
∫ X

0

∫ Y

0
(
∫∫

w≥2d(xv ,yv),h≥s(xv ,yv)
g(w, h)dwdh) f (x, y)dydx, (A1)

where X and Y are the dimensions of the tunnel in the horizontal and vertical axes, re-
spectively. The density probability of the width and height of the object is defined by
g(w, h), and the density probability of the object position is defined by f (x, y). Neverthe-
less, computing this integral requires substantial effort. Thus, using smoothing, we have
the following expression:

E(pv) = E(E(pv|w, h)), (A2)

where E(pv|w, h) simplifies to

E(pv|w, h) =
∫ X

0

∫ Y

0
1w≥2d(xv ,yv),h≥s(xv ,yv) f (x, y)dydx. (A3)

The limits of the unit value are derived from the presence of an obstruction, which
is mathematically described by the function d(x, y) and the function s(x, y), based on the
geometry provided in Figure A1. The function d(x, y) determines whether an obstruction
is produced in the X axis, which can be determined using the distance from the center of
the object to the projection on the ground of the signal sent between the receiver and the
transmitter. The function s(x, y) determines whether an obstruction is produced in the Z
axis. The expression of d(x, y) for a transmitter and receiver pair is

d(xv, yv)
i,j =

|(yT
i − yR

j )xv − (xT
i − xR

j )yv − xR
j yT

i + xT
i yR

j |√
(yT

i − yR
j )

2 + (xT
i − xR

j )
2

, (A4)

where xT
i , yT

i are the coordinates of the transmitter, xR
j , yR

j are the coordinates of the receiver,
and xv, yv are the coordinates of the center of the obstacle.
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Figure A1. The described scenario, where xv and yv are the coordinates of the object, h is its height,
and w is its width along the X axis.

The expression of s(x, y) is a modified version of the one in [18], since symmetry is
desired along the X axis. The function is

s(xv, yv)
i,j =

(yT
i − yR

j )
2 + (xT

i − xR
j )

2

2
√
(yT

i − yR
j )

2 + (xT
i − xR

j )
2

+
(
(yv−yjR

α )2 + (yv − yR
j )

2

2
√
(yT

i − yR
j )

2 + (xT
i − xR

j )
2

−
[( (yv−yi R

α )2 + (yv − yT
i )

2

2
√
(yT

i − yR
j )

2 + (xT
i − xR

j )
2
+ zR

j , (A5)

where α is the slope of the obstacle obstruction:

α =
yi − yj

xi − xj
(A6)

Furthermore, we can rewrite the integral E(pv|w, h) as an equivalent to the sum

E(pv|w, h) =
4

∑
i=1

2

∑
j=1

Iij −
4

∑
i=1

4

∑
j=3

Iij, (A7)

where each Iij is defined by being part of a certain subset of geometrical conditions.
The integral of E(pv|w, h) can be divided into four cases. These four cases arise from

different values of d(x, y) and s(x, y). The first two cases come from assuming

(yT
i − yR

j )xv − (xT
i − xR

j )yv − xR
j yT

i + xT
i yR

j ≥ 0. (A8)

In this case, the inequality

d(xv, yv)
i,j ≤ w

2
, (A9)
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transforms into the following inequality:

yij

xi j
xv +

(xiyj − xjyi)

xij
−

wdij

2
≤ yv, (A10)

αxv + W1 − W2 ≤ yv. (A11)

Since the inequality holds, we also have the following inequality:

αxv + W1 ≥ yv. (A12)

In this case, xij ≥ 0, d ≥ 0, and α ≤ 0. The second case occurs if xij ≤ 0. Since the sign
is negative, the inequalities are expressed as

αxv + W1 ≤ yv, (A13)

αxv + W1 − W2 ≥ yv. (A14)

The third and fourth cases follow the same logic but with d ≤ 0. In the third case,
xij ≥ 0, so the inequalities are

αxv + W1 ≤ yv, (A15)

αxv + W1 + W2 ≥ yv. (A16)

In the fourth case, xij ≤ 0, so the inequalities are

αxv + W1 ≥ yv, (A17)

αxv + W1 + W2 ≤ yv. (A18)

All these inequalities are conditions for an obstruction along the X axis. In the case of
the Z axis, we have one condition, which is

h − hjdij

cot δ(1 + 1
α2 )

− (di j2 + 2yvyij − y2
j + y2

i ) ≤ yv, (A19)

H1 − H2 ≤ yv. (A20)

We integrate over the Y axis using

Iy =
∫ ymax

ymin

1w≥2d(xv ,yv),h≥s(xv ,yv) f (x, y)dy. (A21)

with f (x, y) = 1
XY being a uniform distribution. For each case, the integral will take a

different form. The four integrals over Y are

Iy
1 = 1αxv+W1≥ymin 1αxv+W1−W2≤ymax 1H1−H2≤ymax

(min(ymax, αxv + W1)− max(ymin, H1 − H2, αxv + W1 − W2)),

Iy
2 = 1αxv+W1≤ymin 1αxv+W1−W2≥ymax 1H1−H2≤ymax

(min(ymax, αxv + W1 − W2)− max(ymin, H1 − H2, αxv + W1)),

Iy
3 = 1αxv+W1≤ymin 1αxv+W1+W2≥ymax 1H1−H2≤ymax

(min(ymax, αxv + W1 + W2)− max(ymin, H1 − H2, αxv + W1)),

Iy
4 = 1αxv+W1≥ymin 1αxv+W1+W2≤ymax 1H1−H2≤ymax

(min(ymax, αxv + W1)− max(ymin, H1 − H2, αxv + W1 + W2)).
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Letting γ = max(ymin, H1 − H2), we obtain the indexes of the integrals of the sum
∑ ∑ Iij. For the integral IY

1 , we have

I11 = ymax(min(xmax,
γ − W1

α
,

ymax − W1

α
)− max(0,

ymax + W2 − W1

α
))

10≤(γ−W1)
1

xmax≥
ymax+W2−W1

α

10≤ymax−W11H1−H2≤ymax ,

I12 = α
x2

2
+ W1

∣∣∣∣
lb12,ub12

10≤(γ−W1)
1

xmax≥
ymax+W2−W1

α

1xmax≥ymax−W11H1−H2≤ymax ,

I13 = γ(min(xmax,
ymin − W1

α
)− max(0,

(ymax + W2 − W1)

α
,

γ + W2 − W1

α
))

10≤(γ−W1)
1

xmax≥
ymax+W2−W1

α

1
xmax≥

γ+W2−W1
α

1H1−H2≤ymax ,

I14 = α
x2

2
+ (W1 − W2)x

∣∣∣∣
lb14,ub14

10≤(γ−W1)
1

xmax≥
ymax+W2−W1

α

1
0≤ γ+W2−W1

α

1H1−H2≤ymax ,

ub12 = min(xmax,
ymin − W1

α
),

lb12 = max(0,
ymax + W2 − W1

α
,

ymax − W1

α
),

ub14 = min(xmax,
ymin − W1

α
,

γ + W2 − W1

α
),

lb14 = max(0,
ymax + W2 − W1

α
).

For the integral IY
2 , we have

I21 = ymax(min(xmax,
ymax − W1

α
)− max(0,

ymax + W2 − W1

α
,

γ + W2 − W1

α
))

10≤(ymax−W1)
1

xmax≥
γ+W2−W1

α

1
xmax≥

ymax+W2−W1
α

1H1−H2≤ymax ,

I22 = α
x2

2
+ (W1 − W2)x

∣∣∣∣
lb22,ub22

10≤(ymax−W1)
1

xmax≥
γ+W2−W1

α

1
0≤ ymax−W2−W1

α

1H1−H2≤ymax ,

I23 = γ(min(xmax,
ymax − W1

α
,

γ − W1

α
)− max(0,

(γ + W2 − W1)

α
))

10≤(γ−W1)
1

0≤ γ−W1
α

1
xmax≥

γ+W2−W1
α

1H1−H2≤ymax ,

I24 = α
x2

2
+ W1x

∣∣∣∣
lb24,ub24

10≤(ymax−W1)
1

xmax≥
γ−W1

α

1
xmax≥

γ+W2−W1
α

1H1−H2≤ymax ,

ub22 = min(xmax,
ymax − W1

α
,

ymax + W2 − W1

α
),

lb22 = max(0,
γ + W2 − W1

α
),

ub24 = min(xmax,
γ − W1

α
),

lb24 = max(0,
γ + W2 − W1

α
,

γ − W1

α
).
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For the integral IY
3 , we have

I31 = ymax(min(xmax,
γ − W2 − W1

α
,

ymax − W2 − W1

α
)− max(0,

ymax − W1

α
))

1
xmax≥

(ymax−W1)
α

1
0≤ γ−W2−W1

α

1
0≤ ymax−W2−W1

α

1H1−H2≤ymax ,

I32 = α
x2

2
+ (W1 + W2)x

∣∣∣∣
lb32,ub32

10≤(γ−W2−W1)
1

xmax≥
ymax−W1

α

1
xmax≥

ymax−W2−W1
α

1H1−H2≤ymax ,

I33 = γ(min(xmax,
ymax − W1 − W2

α
)− max(0,

(ymax − W1)

α
,

γ − W1

α
))

10≤(γ−W1−W2)
1

xmax≥
γ−W1

α

1
xmax≥

ymax−W1
α

1H1−H2≤ymax ,

I34 = α
x2

2
+ W1x

∣∣∣∣
lb34,ub34

10≤(γ−W1−W2)
1

xmax≥
γ−W1

α

1
0≤ γ−W1

α

1H1−H2≤ymax ,

ub32 = min(xmax,
ymax + W2 − W1

α
),

lb32 = max(0,
γ − W2 − W1

α
,

ymax − W1

α
),

ub34 = min(xmax,
γ − W2 − W1

α
,

γ − W1

α
),

lb34 = max(0,
ymax − W1

α
).

Finally, for the integral IY
4 , we have

I41 = ymax(min(xmax,
ymax − W2 − W1

α
)− max(0,

ymax − W1

α
,

γ − W1

α
)

1
xmax≥

(γ−W1)
α

1
0≤ ymax−W2−W1

α

1
xmax≥

ymax−W1
α

1H1−H2≤ymax ,

I42 = α
x2

2
+ (W1)x

∣∣∣∣
lb42,ub42

10≤(ymax−W1)
1

xmax≥
γ−W1

α

1
0≤ ymax−W2−W1

α

1H1−H2≤ymax ,

I43 = γ(min(xmax,
γ − W1 − W2

α
,

ymax − W2 − W1

α
)− max(0,

(γ − W1)

α
)

10≤(γ−W1−W2)
1

0≤ ymax−W2−W1
α

1
xmax≥

γ−W1
α

1H1−H2≤ymax ,

I44 = α
x2

2
+ W1x

∣∣∣∣
lb44,ub44

10≤(γ−W1−W2)
1

0≤ ymax−W2−W1
α

1
xmax≥

γ−W1
α

1H1−H2≤ymax ,

ub42 = min(xmax,
ymax − W2 − W1

α
,

ymax − W1

α
),

lb42 = max(0,
ymax − W1

α
),

ub44 = min(xmax,
ymax − W2 − W1

α
),

lb44 = max(0,
γ − W1

α
,

γ − W2 − W1

α
).
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Appendix B

I2n+1,m,2 =
2P(S2n+1)

(∆Xn)2 tan(θn
cr)

[
4

∑
i=1

Ik,2n+1,2,i + (θ
Lm−1
n − θn

cr)Λm(Lm−1)

]
.

I2n+1,m,2,1 = Gk,2n+1,2,1(θ
n
cr)− Gk,2n+1,2,1(θ

Lm−1
n )

G2n+1,m,1(θ) =
cos(Θ)

sin(β)
ak∆Xnb(

tan(θ)
√

cos(2θ) + 1 + 2σ2)√
2

+√
1 + σ2F(θ| 1√

1 + σ2
)−

√
1 + σ2E(θ| 1√

1 + σ2
)

I2n+1,m,2 = (amb2

[
∞

∑
k=0

1
2k + 1

(
− 1

2
k

)
(F2k+1

sec (min(θ̂, θn
cr))− F2k+1

sec (θ
Lm−1
n )

]

− amb2

[
∞

∑
k=1

(
− 1

2
k

)
(F2k

cos(θ
n
cr)− F2k

cos(min(θ̂, θn
cr)))

1
2k

]

+ amb2
[

ln(
∆Xn

b
)(θn

cr − min(θ̂, θn
cr))− (Flog cos(θ

n
cr)− Flog cos(min(θ̂, θn

cr)))

]
)1 ∆Xn

b <1

(−amb2

[
∞

∑
k=1

(
− 1

2
k

)
(F2k

cos(θ
n
cr)− F2k

cos(θ
Lm−1
n ))

1
2k

]

+ amb2
[

ln(
∆Dn

b
)(θn

cr − θ
Lm−1
n )− (Flog cos(θ

n
cr)− Flog cos(θ

Lm−1
n ))

]
)1 ∆Xn

b >1

+ amb2(θn
cr − θ

Lm−1
n )ln(b).

θ̂ = cos−1(
∆Xn

b
)

F2k+1
sec (x) = (tan(x)sec2k−1(x))

k

∑
n=0

(k − (2n−1)
2 )(n)

(k − n)(n)
cos2n(x)+

ln(
sin( x

2 ) + cos( x
2 )

cos( x
2 )− sin( x

2 )
)
(− 1

2 )(k)
(1)(k)

F2k
cos(x) = (sin(x) cos2k−1(x))

k

∑
n=0

(k − (2n−1)
2 )(n)

(k − n)(n)
cos−2n(x)

Flog cos(x) = −xln(2) +
∞

∑
n=1

(−1)n+1 sin(2nx)
2n2

I2n+1,m,3 =
2P(S2n+1)

(∆Xn)2 tan(θn
cr)

a
sin(β)

∆Xn(log(
cos( θn

cr
2 ) + sin( θn

cr
2 )

cos( θn
cr
2 )− sin( θn

cr
2 )

)

− log(
cos( θ

Lm−1
n

2 ) + sin( θ
Lm−1
n

2 )

cos( θ
Lm−1
n

2 )− sin( θ
Lm−1
n

2 )
),

I2n+1,m,4 =
2P(S2n+1)

(∆Xn)2 tan(θn
cr)
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with a(n) being the Pochhammer function.
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Appendix C
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Appendix D
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while the solution for the case under patching is
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