Mostrar el registro sencillo de la publicación

dc.contributor.authorNavarro, Cristóbal A.
dc.contributor.authorCarrasco, Roberto
dc.contributor.authorBarrientos, Ricardo
dc.contributor.authorRiquelme, Javier A.
dc.contributor.authorVega, Raimundo
dc.date.accessioned2020-11-17T18:55:10Z
dc.date.available2020-11-17T18:55:10Z
dc.date.issued2021
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/3222
dc.description.abstractThis article proposes a parallel algorithm for computing the arithmetic reduction of $n$ numbers as a set of matrix-multiply accumulate (MMA) operations that are executed simultaneously by GPU tensor cores. The analysis, assuming tensors of size $m \times m$ , shows that the proposed algorithm has a parallel running time of $T(n)=5 log_{m^2}{n}$ and a speedup of $S=\frac{4}{5} log_{2}{m^2}$ over a canonical parallel reduction. Experimental performance results on a Tesla V100 GPU show that the tensor-core based approach is energy efficient and runs up to $\sim 3.2 \times$ and $2\times$ faster than a standard GPU-based reduction and Nvidia's CUB library, respectively, while keeping the numerical error below 1 percent with respect to a double precision CPU reduction. The chained design of the algorithm allows a flexible configuration of GPU thread-blocks and the optimal values found through experimentation agree with the theoretical ones. The results obtained in this work show that GPU tensor cores are relevant not only for Deep Learning or Linear Algebra computations, but also for applications that require the acceleration of large summations.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceIEEE Transactions on Parallel and Distributed Systems, 32(1), 72-84es_CL
dc.subjectArithmetic reductiones_CL
dc.subjectGPU computinges_CL
dc.subjectTensor coreses_CL
dc.subjectMatrix multiply accumulatees_CL
dc.subjectParallel reductiones_CL
dc.titleGPU tensor cores for fast arithmetic reductionses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.uriieeexplore.ieee.org/document/9147055es_CL
dc.ucm.doidoi.org/10.1109/TPDS.2020.3011893es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile