Mostrar el registro sencillo de la publicación
A new COVID-19 detection method based on CSK/QAM visible light communication and machine learning
dc.contributor.author | Soto, Ismael | |
dc.contributor.author | Zamorano-Illanes, Raul | |
dc.contributor.author | Becerra, Raimundo | |
dc.contributor.author | Palacios Játiva, Pablo | |
dc.contributor.author | Azurdia-Meza, Cesar A. | |
dc.contributor.author | Alavia, Wilson | |
dc.contributor.author | García, Verónica | |
dc.contributor.author | Ijaz, Muhammad | |
dc.contributor.author | Zabala-Blanco, David | |
dc.date.accessioned | 2023-03-21T20:05:12Z | |
dc.date.available | 2023-03-21T20:05:12Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | http://repositorio.ucm.cl/handle/ucm/4530 | |
dc.description.abstract | This article proposes a novel method for detecting coronavirus disease 2019 (COVID-19) in an underground channel using visible light communication (VLC) and machine learning (ML). We present mathematical models of COVID-19 Deoxyribose Nucleic Acid (DNA) gene transfer in regular square constellations using a CSK/QAM-based VLC system. ML algorithms are used to classify the bands present in each electrophoresis sample according to whether the band corresponds to a positive, negative, or ladder sample during the search for the optimal model. Complexity studies reveal that the square constellation N=22i×22i,(i=3) yields a greater profit. Performance studies indicate that, for BER = 10−3, there are gains of −10 [dB], −3 [dB], 3 [dB], and 5 [dB] for N=22i×22i,(i=0,1,2,3), respectively. Based on a total of 630 COVID-19 samples, the best model is shown to be XGBoots, which demonstrated an accuracy of 96.03% , greater than that of the other models, and a recall of 99% for positive values. | es_CL |
dc.language.iso | en | es_CL |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Chile | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | * |
dc.source | Sensors, 23(3), 1533 | es_CL |
dc.subject | COVID-19 | es_CL |
dc.subject | CSK | es_CL |
dc.subject | QAM | es_CL |
dc.subject | VLC | es_CL |
dc.subject | BER | es_CL |
dc.title | A new COVID-19 detection method based on CSK/QAM visible light communication and machine learning | es_CL |
dc.type | Article | es_CL |
dc.ucm.facultad | Facultad de Ciencias de la Ingeniería | es_CL |
dc.ucm.indexacion | Scopus | es_CL |
dc.ucm.indexacion | Isi | es_CL |
dc.ucm.uri | mdpi.com/1424-8220/23/3/1533 | es_CL |
dc.ucm.doi | doi.org/10.3390/s23031533 | es_CL |