Mostrar el registro sencillo de la publicación

dc.contributor.authorPereira, Alfredo
dc.contributor.authorValdés-Muñoz, Elizabeth
dc.contributor.authorMarican, Adolfo
dc.contributor.authorCabrera-Barjas, Gustavo
dc.contributor.authorVijayakumar, Sekar
dc.contributor.authorValdés, Oscar
dc.contributor.authorRafael, Diana
dc.contributor.authorAndrade, Fernanda
dc.contributor.authorAbaca, Paulina
dc.contributor.authorBustos, Daniel
dc.contributor.authorDurán-Lara, Esteban F.
dc.date.accessioned2023-03-29T12:29:36Z
dc.date.available2023-03-29T12:29:36Z
dc.date.issued2022
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/4587
dc.description.abstractIn light of the growing bacterial resistance to antibiotics and in the absence of the development of new antimicrobial agents, numerous antimicrobial delivery systems over the past decades have been developed with the aim to provide new alternatives to the antimicrobial treatment of infections. However, there are few studies that focus on the development of a rational design that is accurate based on a set of theoretical-computational methods that permit the prediction and the understanding of hydrogels regarding their interaction with cationic antimicrobial peptides (cAMPs) as potential sustained and localized delivery nanoplatforms of cAMP. To this aim, we employed docking and Molecular Dynamics simulations (MDs) that allowed us to propose a rational selection of hydrogel candidates based on the propensity to form intermolecular interactions with two types of cAMPs (MP-L and NCP-3a). For the design of the hydrogels, specific building blocks were considered, named monomers (MN), co-monomers (CM), and cross-linkers (CL). These building blocks were ranked by considering the interaction with two peptides (MP-L and NCP-3a) as receptors. The better proposed hydrogel candidates were composed of MN3-CM7-CL1 and MN4-CM5-CL1 termed HG1 and HG2, respectively. The results obtained by MDs show that the biggest differences between the hydrogels are in the CM, where HG2 has two carboxylic acids that allow the forming of greater amounts of hydrogen bonds (HBs) and salt bridges (SBs) with both cAMPs. Therefore, using theoretical-computational methods allowed for the obtaining of the best virtual hydrogel candidates according to affinity with the specific cAMP. In conclusion, this study showed that HG2 is the better candidate for future in vitro or in vivo experiments due to its possible capacity as a depot system and its potential sustained and localized delivery system of cAMPes_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourcePharmaceutics, 15(2), 474es_CL
dc.subjectCationic antimicrobial peptideses_CL
dc.subjectHydrogelses_CL
dc.subjectMolecular dockinges_CL
dc.subjectMolecular dynamics simulationses_CL
dc.subjectVirtual-screeninges_CL
dc.subjectAntibiotic resistancees_CL
dc.titleRational design of hydrogels for cationic antimicrobial peptide delivery: a molecular modeling approaches_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias Agrarias y Forestaleses_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urimdpi.com/1999-4923/15/2/474es_CL
dc.ucm.doidoi.org/10.3390/pharmaceutics15020474es_CL


Ficheros en la publicación

Vista Previa No Disponible
Thumbnail

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile