Mostrar el registro sencillo de la publicación

dc.contributor.authorSedano-Capdevila, Alba
dc.contributor.authorToledo-Acosta, Mauricio
dc.contributor.authorBarrigon, María Luisa
dc.contributor.authorMorales-González, Eliseo
dc.contributor.authorTorres-Moreno, David
dc.contributor.authorMartínez-Zaldivar, Bolívar
dc.contributor.authorHermosillo-Valadez, Jorge
dc.contributor.authorBaca-García, Enrique
dc.date.accessioned2023-04-04T20:37:01Z
dc.date.available2023-04-04T20:37:01Z
dc.date.issued2023
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/4621
dc.description.abstractTraditional research methods have shown low predictive value for suicidal risk assessments and limitations to be applied in clinical practice. The authors sought to evaluate natural language processing as a new tool for assessing self-injurious thoughts and behaviors and emotions related. We used MEmind project to assess 2838 psychiatric outpatients. Anonymous unstructured responses to the open-ended question “how are you feeling today?” were collected according to their emotional state. Natural language processing was used to process the patients' writings. The texts were automatically represented (corpus) and analyzed to determine their emotional content and degree of suicidal risk. Authors compared the patients' texts with a question used to assess lack of desire to live, as a suicidal risk assessment tool. Corpus consists of 5,489 short free-text documents containing 12,256 tokenized or unique words. The natural language processing showed an ROC-AUC score of 0.9638 when compared with the responses to lack of a desire to live question. Natural language processing shows encouraging results for classifying subjects according to their desire not to live as a measure of suicidal risk using patients’ free texts. It is also easily applicable to clinical practice and facilitates real-time communication with patients, allowing better intervention strategies to be designed.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourcePsychiatry Research, 322, 115090es_CL
dc.titleText mining methods for the characterisation of suicidal thoughts and behavioures_CL
dc.typeArticlees_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urisciencedirect.com/science/article/abs/pii/S0165178123000434?via%3Dihubes_CL
dc.ucm.doidoi.org/10.1016/j.psychres.2023.115090es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile