BitClust: fast geometrical clustering of long molecular dynamics simulations
Autor
González-Alemán, Roy
Hernández-Castillo, David
Rodríguez-Serradet, Alejandro
Caballero, Julio
Hernández-Rodríguez, Erix W.
Montero-Cabrera, Luis
Fecha
2020Resumen
The growing computational capacity allows the investigation of large biomolecular systems by increasingly extensive molecular dynamics simulations. The resulting huge trajectories demand efficient partition methods to discern relevant structural dissimilarity. Clustering algorithms are available to address this task, but their implementations still need to be improved to gain in computational speed and to reduce the consumption of random access memory. We propose the BitClust code which, based on a combination of Python and C programming languages, performs fast structural clustering of long molecular trajectories. BitClust takes advantage of bitwise operations applied to a bit-encoded pairwise similarity matrix. Our approach allowed us to process a half-million frame trajectory in 6 h using less than 35 GB, a task that is not affordable with any of the similar alternatives.
Fuente
Journal of Chemical Information and Modeling, 60(2), 444-448Link de Acceso
Click aquí para ver el documentoIdentificador DOI
doi.org/10.1021/acs.jcim.9b00828Colecciones
La publicación tiene asociados los siguientes ficheros de licencia: