Mostrar el registro sencillo de la publicación

dc.contributor.authorSilva-Aravena, Fabián
dc.contributor.authorNúñez Delafuente, Hugo
dc.contributor.authorGutiérrez-Bahamondes, Jimmy H
dc.contributor.authorMorales, Jenny
dc.date.accessioned2023-06-05T20:23:40Z
dc.date.available2023-06-05T20:23:40Z
dc.date.issued2023
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/4819
dc.description.abstractWorldwide, the coronavirus has intensified the management problems of health services, significantly harming patients. Some of the most affected processes have been cancer patients’ prevention, diagnosis, and treatment. Breast cancer is the most affected, with more than 20 million cases and at least 10 million deaths by 2020. Various studies have been carried out to support the management of this disease globally. This paper presents a decision support strategy for health teams based on machine learning (ML) tools and explainability algorithms (XAI). The main methodological contributions are: first, the evaluation of different ML algorithms that allow classifying patients with and without cancer from the available dataset; and second, an ML methodology mixed with an XAI algorithm, which makes it possible to predict the disease and interpret the variables and how they affect the health of patients. The results show that first, the XGBoost Algorithm has a better predictive capacity, with an accuracy of 0.813 for the train data and 0.81 for the test data; and second, with the SHAP algorithm, it is possible to know the relevant variables and their level of significance in the prediction, and to quantify the impact on the clinical condition of the patients, which will allow health teams to offer early and personalized alerts for each patient.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceCancers, 15(9), 2443es_CL
dc.subjectMachine learninges_CL
dc.subjectExplainable artificial intelligencees_CL
dc.subjectRisk factorses_CL
dc.subjectBreast cancer preventiones_CL
dc.subjectDecision support systemses_CL
dc.titleA hybrid algorithm of ML and XAI to prevent breast cancer: a strategy to support decision makinges_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias Sociales y Económicases_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urimdpi.com/2072-6694/15/9/2443es_CL
dc.ucm.doidoi.org/10.3390/cancers15092443es_CL


Ficheros en la publicación

Vista Previa No Disponible
Thumbnail

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile