Mostrar el registro sencillo de la publicación

dc.contributor.authorCoronel, Franklin
dc.contributor.authorBarreno, Norma
dc.contributor.authorMuñoz, Paúl
dc.contributor.authorZabala-Blanco, David
dc.contributor.authorOnofa, Noemí
dc.contributor.authorFlores-Calero, Marco
dc.date.accessioned2023-06-05T20:29:58Z
dc.date.available2023-06-05T20:29:58Z
dc.date.issued2022
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/4833
dc.description.abstractThis paper presents a web application to control personnel access to a work area without contact; this makes it ideal to help combat the Covid-19 health emergency. For its implementation, deep learning and computer vision techniques have been used for face detection and recognition. The system consists of four phases, the first one aimed at detecting and aligning the face with deep learning algorithms. The second phase obtains the facial features to recognize different people. The third phase consists of implementing a module that detects face impersonation, and significantly prevents possible attacks on the system by identifying whether the face is real or fake; and the last phase is the design and development of the web interface. This interface performs the communication of the algorithms, the users and the administration. In order to evaluate this proposal, several experiments have been carried out under diverse real conditions. The main results to correctly identify the user show that it has an accuracy of 99 %, in an estimated time of 3 seconds, in the range of 20 cm to 90 cm away, with respect to the camera. In addition, the system is capable of identifying users wearing masks or glasses, in this case with an accuracy of 95% in 4 seconds.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.source2022 IEEE Colombian Conference on Communications and Computing (COLCOM), 1-6es_CL
dc.subjectDeep learninges_CL
dc.subjectCOVID-19es_CL
dc.subjectAccess controles_CL
dc.subjectFace recognitiones_CL
dc.subjectGlasses_CL
dc.subjectCamerases_CL
dc.subjectProposalses_CL
dc.subjectPersonneles_CL
dc.subjectFacial featureses_CL
dc.titleWeb-based personal access control system using facial recognition with deep learning techniqueses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.uriieeexplore.ieee.org/document/10107868es_CL
dc.ucm.doidoi.org/10.1109/Colcom56784.2022.10107868es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile