Mostrar el registro sencillo de la publicación
Extreme learning machine for mass spectrometry data analysis
dc.contributor.author | Ulloa Orellana, Mario | |
dc.contributor.author | López-Cortès, Xaviera A. | |
dc.contributor.author | Zabala-Blanco, David | |
dc.contributor.author | Palacios Játiva, Pablo | |
dc.contributor.author | Datta, Jayanta | |
dc.date.accessioned | 2023-06-05T20:30:08Z | |
dc.date.available | 2023-06-05T20:30:08Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | http://repositorio.ucm.cl/handle/ucm/4834 | |
dc.description.abstract | In this work, we introduce the use of a weighted extreme learning machine (ELM) to give an automated predictive value to mass spectrometry data. In specific, the data obtained with Matrix-Assisted Laser DesorptioMonization-Time of Flight (MALDI-TOF) technique are explored for balanced and unbalanced dataset scenarios, and compared with benchmarking machine learning algorithms (Naive Bayes, Support Vector Machine, Random Forest, and Logistic Regression). Finally, the evaluation of the performance of the proposed weighted ELM was realized in order to determine the most efficient technique in terms of predicting diseases. In the training phase, the weighted ELM reaches the 100% of accuracy, sensitivity and specificity, which are 25% and 30% higher than the rest of benchmarking machine learning algorithms. Meanwhile, in the testing phase results, the ELM observations highlight the scarce bias to predict positive and negative classes in unbalanced datasets. | es_CL |
dc.language.iso | en | es_CL |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Chile | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | * |
dc.source | 2022 IEEE Colombian Conference on Communications and Computing (COLCOM), 1-6 | es_CL |
dc.subject | Training | es_CL |
dc.subject | Support vector machines | es_CL |
dc.subject | Machine learning algorithms | es_CL |
dc.subject | Extreme learning machines | es_CL |
dc.subject | Sensitivity and specificity | es_CL |
dc.subject | Benchmark testing | es_CL |
dc.subject | Mass spectroscopy | es_CL |
dc.title | Extreme learning machine for mass spectrometry data analysis | es_CL |
dc.type | Article | es_CL |
dc.ucm.facultad | Facultad de Ciencias de la Ingeniería | es_CL |
dc.ucm.indexacion | Scopus | es_CL |
dc.ucm.uri | ieeexplore.ieee.org/document/10107875/authors#authors | es_CL |
dc.ucm.doi | doi.org/10.1109/Colcom56784.2022.10107875 | es_CL |
Ficheros en la publicación
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a esta publicación. |