Mostrar el registro sencillo de la publicación

dc.contributor.authorUlloa Orellana, Mario
dc.contributor.authorLópez-Cortès, Xaviera A.
dc.contributor.authorZabala-Blanco, David
dc.contributor.authorPalacios Játiva, Pablo
dc.contributor.authorDatta, Jayanta
dc.date.accessioned2023-06-05T20:30:08Z
dc.date.available2023-06-05T20:30:08Z
dc.date.issued2022
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/4834
dc.description.abstractIn this work, we introduce the use of a weighted extreme learning machine (ELM) to give an automated predictive value to mass spectrometry data. In specific, the data obtained with Matrix-Assisted Laser DesorptioMonization-Time of Flight (MALDI-TOF) technique are explored for balanced and unbalanced dataset scenarios, and compared with benchmarking machine learning algorithms (Naive Bayes, Support Vector Machine, Random Forest, and Logistic Regression). Finally, the evaluation of the performance of the proposed weighted ELM was realized in order to determine the most efficient technique in terms of predicting diseases. In the training phase, the weighted ELM reaches the 100% of accuracy, sensitivity and specificity, which are 25% and 30% higher than the rest of benchmarking machine learning algorithms. Meanwhile, in the testing phase results, the ELM observations highlight the scarce bias to predict positive and negative classes in unbalanced datasets.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.source2022 IEEE Colombian Conference on Communications and Computing (COLCOM), 1-6es_CL
dc.subjectTraininges_CL
dc.subjectSupport vector machineses_CL
dc.subjectMachine learning algorithmses_CL
dc.subjectExtreme learning machineses_CL
dc.subjectSensitivity and specificityes_CL
dc.subjectBenchmark testinges_CL
dc.subjectMass spectroscopyes_CL
dc.titleExtreme learning machine for mass spectrometry data analysises_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.uriieeexplore.ieee.org/document/10107875/authors#authorses_CL
dc.ucm.doidoi.org/10.1109/Colcom56784.2022.10107875es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile