Mostrar el registro sencillo de la publicación

dc.contributor.authorMartínez, Diego
dc.contributor.authorZabala-Blanco, David
dc.contributor.authorAhumada García, Roberto
dc.contributor.authorAzurdia-Meza, Cesar A.
dc.contributor.authorFlores-Calero, Marco
dc.contributor.authorPalacios-Jativa, Pablo
dc.date.accessioned2023-06-05T20:30:17Z
dc.date.available2023-06-05T20:30:17Z
dc.date.issued2022
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/4835
dc.description.abstractThe fingerprint is one of the most popular and used biometric traits for the identification of people, due to its bio-invariant characteristic, precision, and easy acquisition. One of the stages in the identification of fingerprints is classification, this has the objective of reducing the search times and the computational cost in the databases. Currently, there are several academic publications with methods based on convolutional neural networks (CNN) by using fingerprint images as inputs, which have excellent performance in terms of classification; however, these studies have a very high computational cost, and they require high-performance computing, which is not accessible to everyone. This work will be carefully reviewed proposals for fingerprint identifiers and classifiers by employing extreme learning machines (ELM). The methods proposed by the authors will be analyzed, and these will be compared in terms of the overall performance with the different classifiers considered by the authors in their respective works. In this sense, research works with different types of ELM are considered to see the advantages and disadvantages that they present with each other and to verify how they can contribute to reducing the penetration rate of fingerprint databases. The latter is very important since improving the penetration rate implies reducing search times and computational complexity in fingerprint databases.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.source2022 IEEE Colombian Conference on Communications and Computing (COLCOM), 1-6es_CL
dc.subjectDatabaseses_CL
dc.subjectExtreme learning machineses_CL
dc.subjectImage matchinges_CL
dc.subjectHigh performance computinges_CL
dc.subjectFingerprint recognitiones_CL
dc.subjectSearch problemses_CL
dc.subjectComputational efficiencyes_CL
dc.titleReview of extreme learning machines for the identification and classification of fingerprint databaseses_CL
dc.typeArticlees_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.uriieeexplore.ieee.org/document/10107849es_CL
dc.ucm.doidoi.org/10.1109/Colcom56784.2022.10107849es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile