Mostrar el registro sencillo de la publicación

dc.contributor.authorRau, Francisco
dc.contributor.authorSoto, Ismael
dc.contributor.authorZabala-Blanco, David
dc.contributor.authorAzurdia-Meza, Cesar A.
dc.contributor.authorIjaz, Muhammad
dc.contributor.authorEkpo, Sunday
dc.contributor.authorGutierrez, Sebastian
dc.date.accessioned2023-07-10T19:56:57Z
dc.date.available2023-07-10T19:56:57Z
dc.date.issued2023
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/4870
dc.description.abstractThis paper presents a systematic approach for solving complex prediction problems with a focus on energy efficiency. The approach involves using neural networks, specifically recurrent and sequential networks, as the main tool for prediction. In order to test the methodology, a case study was conducted in the telecommunications industry to address the problem of energy efficiency in data centers. The case study involved comparing four recurrent and sequential neural networks, including recurrent neural networks (RNNs), long short-term memory (LSTM), gated recurrent units (GRUs), and online sequential extreme learning machine (OS-ELM), to determine the best network in terms of prediction accuracy and computational time. The results show that OS-ELM outperformed the other networks in both accuracy and computational efficiency. The simulation was applied to real traffic data and showed potential energy savings of up to 12.2% in a single day. This highlights the importance of energy efficiency and the potential for the methodology to be applied to other industries. The methodology can be further developed as technology and data continue to advance, making it a promising solution for a wide range of prediction problems.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceSensors, 23(11), 4997es_CL
dc.subjectEnergy efficiencyes_CL
dc.subjectMachine learninges_CL
dc.subjectTelecom services operatores_CL
dc.subjectTraffic predictiones_CL
dc.titleA novel traffic prediction method using machine learning for energy efficiency in service provider networkses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urimdpi.com/1424-8220/23/11/4997es_CL
dc.ucm.doidoi.org/10.3390/s23114997es_CL


Ficheros en la publicación

Vista Previa No Disponible
Thumbnail

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile