Mostrar el registro sencillo de la publicación

dc.contributor.authorCobo, Miriam
dc.contributor.authorPérez-Rojas, Francisco Javier
dc.contributor.authorGutiérrez-Rodríguez, Constanza
dc.contributor.authorHeredia, Ignacio
dc.contributor.authorMaragaño Lizama, Patricio
dc.contributor.authorYung-Manriquez, Francisca
dc.contributor.authorLloret Iglesias, Lara
dc.contributor.authorVega, José A.
dc.date.accessioned2023-08-17T18:09:42Z
dc.date.available2023-08-17T18:09:42Z
dc.date.issued2023
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/4910
dc.description.abstractCoronary artery tortuosity is usually an undetected condition in patients undergoing coronary angiography. This condition requires a longer examination by the specialist to be detected. Yet, detailed knowledge of the morphology of coronary arteries is essential for planning any interventional treatment, such as stenting. We aimed to analyze coronary artery tortuosity in coronary angiography with artificial intelligence techniques to develop an algorithm capable of automatically detecting this condition in patients. This work uses deep learning techniques, in particular, convolutional neural networks, to classify patients into tortuous or non-tortuous based on their coronary angiography. The developed model was trained both on left (Spider) and right (45°/0°) coronary angiographies following a fivefold cross-validation procedure. A total of 658 coronary angiographies were included. Experimental results demonstrated satisfactory performance of our image-based tortuosity detection system, with a test accuracy of (87 ± 6)%. The deep learning model had a mean area under the curve of 0.96 ± 0.03 over the test sets. The sensitivity, specificity, positive predictive values, and negative predictive values of the model for detecting coronary artery tortuosity were (87 ± 10)%, (88 ± 10)%, (89 ± 8)%, and (88 ± 9)%, respectively. Deep learning convolutional neural networks were found to have comparable sensitivity and specificity with independent experts’ radiological visual examination for detecting coronary artery tortuosity for a conservative threshold of 0.5. These findings have promising applications in the field of cardiology and medical imaging.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceScientific Reports, 13(1), 11137es_CL
dc.titleNovel deep learning method for coronary artery tortuosity detection through coronary angiographyes_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Medicinaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urinature.com/articles/s41598-023-37868-6#Abs1es_CL
dc.ucm.doidoi.org/10.1038/s41598-023-37868-6es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile