Mostrar el registro sencillo de la publicación

dc.contributor.authorHernández-García, Ruber
dc.contributor.authorSalazar-Jurado, Edwin
dc.contributor.authorBarrientos, Ricardo
dc.contributor.authorCastro, Francisco Manuel
dc.contributor.authorRamos-Cózar, Julián
dc.contributor.authorGuil, Nicolás
dc.date.accessioned2023-09-11T17:33:39Z
dc.date.available2023-09-11T17:33:39Z
dc.date.issued2023
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/4966
dc.description.abstractPalm vein recognition has relevant advantages in comparison with most traditional biometrics, such as high security and recognition performance. In recent years, CNN-based models for vascular biometrics have improved the state-of-the-art, but they have the disadvantage of requiring a larger number of samples for training. In this context, the generation of synthetic databases is very effective for evaluating the performance of biometric systems. The present study proposes a new perspective of a transfer learning approach for palm vein recognition, evaluating the use of Synthetic-sPVDB and NS-PVDB synthetic databases for pre-training deep learning models and validating their performance on real databases. The proposed methodology comprises two different branches as inputs. Firstly, a synthetic database is used to train a CNN model, and in the second branch, a real database is used to finetune and evaluate the performance of the resulting pre-trained model. For the feature learning process, we implemented two end-to-end CNN architectures based on AlexNet and Resnet32. The experimental results on the most representative public datasets have shown the usefulness of using palm vein synthetic images for transfer learning, outperforming the state-of-the-art results.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceIEEE 13th International Conference on Pattern Recognition Systems (ICPRS), 2023, 1-7es_CL
dc.subjectTraininges_CL
dc.subjectRepresentation learninges_CL
dc.subjectDatabaseses_CL
dc.subjectBiometrics (access control)es_CL
dc.subjectScalabilityes_CL
dc.subjectBiological system modelinges_CL
dc.subjectTransfer learninges_CL
dc.titleFrom synthetic data to real palm vein identification: a fine-tuning approaches_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias Básicases_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.uriieeexplore.ieee.org/document/10179042es_CL
dc.ucm.doidoi.org/10.1109/ICPRS58416.2023.10179042es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile