Mostrar el registro sencillo de la publicación

dc.contributor.authorMartínez, Diego
dc.contributor.authorZabala-Blanco, David
dc.contributor.authorAhumada-Garcia, Roberto
dc.contributor.authorSoto, Ismael
dc.contributor.authorDehghan Firoozabadi, Ali
dc.contributor.authorPalacios Játiva, Pablo
dc.date.accessioned2023-10-25T13:07:32Z
dc.date.available2023-10-25T13:07:32Z
dc.date.issued2023
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5038
dc.description.abstractCurrently, cardiovascular diseases are the leading cause of human death according to the World Health Organization. Their prediction allows doctors to indicate preventive measures to their patients and perform procedures on time. In this research, the performance of different Extreme Learning Machine (ELM)-based algorithms applied to the binary classification problem of the heart's state (healthy or sick) was evaluated. The following ELMs were used: the basic model, regularized, weighted, and multi-layer. The experiments were carried out in a MATLAB programming environment and a mid-range laptop. To evaluate the models' performance, the accuracy (Acc), the geometric mean (G-mean), and the execution time of the algorithms were used, comparing the results with other classifiers reported in the literature. In this research, it is proposed to use a Weighted ELM (W1-ELM) due to its acceptable accuracy of 0.81 and its low training complexity compared to deeper models such as Convolutional Neural Networks.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceIEEE Colombian Conference on Applications of Computational Intelligence (ColCACI), 2023, 1-7es_CL
dc.subjectMathematical modelses_CL
dc.subjectConvolutional neural networkses_CL
dc.subjectSupport vector machineses_CL
dc.subjectHeartes_CL
dc.subjectExtreme learning machineses_CL
dc.subjectSilicones_CL
dc.subjectComputational modelinges_CL
dc.titleEvaluation of extreme learning machines for detecting heart diseaseses_CL
dc.typeArticlees_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.uriieeexplore.ieee.org/document/10226128/authors#authorses_CL
dc.ucm.doidoi.org/10.1109/ColCACI59285.2023.10226128es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile