Mostrar el registro sencillo de la publicación

dc.contributor.authorMoraga, Leonardo Igor
dc.contributor.authorRivelli Malcó, Juan Pablo
dc.contributor.authorZabala-Blanco, David
dc.contributor.authorAhumada-García, Roberto
dc.contributor.authorAzurdia-Meza, Cesar A.
dc.contributor.authorDehghan Firoozabadi, Ali
dc.date.accessioned2023-10-25T13:10:58Z
dc.date.available2023-10-25T13:10:58Z
dc.date.issued2023
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5040
dc.description.abstractMemory analysis is critical to detecting malicious processes, as it can capture various characteristics and behaviors. However, although it is a field in full research, there are still some major obstacles in malware detection, such as optimizing the detection rate and countering advanced malware obfuscation. Since advanced malware uses obfuscation and other techniques to hide from detection methods, there is a great need for an efficient framework that focuses on combating obfuscation and detecting hidden malware. This work proposes an extreme learning machine (ELM) trained with a database of viruses, classified into families of Trojans, spyware, and ransomware. The performance of different ELMs will be implemented and analyzed, among them, the standard ELM, regularized ELM, unbalanced ELM I and II. Its performance will be studied both in binary classification and in multiple classifications, in order to train an antivirus capable of combating the aforementioned difficulties. Prior to obtaining the results, the operating principle of these autonomous learning methods and the methodology to be followed are explained. Finally, the results obtained for each learning method are compared.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceIEEE Colombian Conference on Applications of Computational Intelligence (ColCACI), 2023, 1-6es_CL
dc.subjectMalwarees_CL
dc.subjectComputer viruseses_CL
dc.subjectViruses (medical)es_CL
dc.subjectSpywarees_CL
dc.subjectRansomwarees_CL
dc.subjectTrojan horseses_CL
dc.subjectLearning systemses_CL
dc.titleDetection of obfuscated malware by engineering memory functions applying ELMes_CL
dc.typeArticlees_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.uriieeexplore.ieee.org/document/10226058es_CL
dc.ucm.doidoi.org/10.1109/ColCACI59285.2023.10226058es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile