Mostrar el registro sencillo de la publicación

dc.contributor.authorBarría Valdebenito, Pedro
dc.contributor.authorZabala-Blanco, David
dc.contributor.authorAhumada-García, Roberto
dc.contributor.authorSoto, Ismael
dc.contributor.authorDehghan Firoozabadi, Ali
dc.contributor.authorFlores-Calero, Marco
dc.date.accessioned2023-10-25T13:11:49Z
dc.date.available2023-10-25T13:11:49Z
dc.date.issued2023
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5041
dc.description.abstractDetermining the potability of water for consumption is crucial for human health. To assess the water quality, levels of minerals and ions are measured, such as pH, hardness, sodium, chloramines, sulfate, conductivity, organic carbon, tri-halomethanes, and turbidity. To achieve this more efficiently and accurately, techniques of Machine Learning (ML) and Deep Learning (DL) have been applied, with deep neural networks being one of the most popular methods. In this study, Extreme Learning Machines (ELM) are evaluated for the first time, including the standard ELM, the Regularized ELM, the weighted ELMs in configurations 1 and 2, and the multi-layer ELM. Accuracy and the G-mean were used to extensively compare the results and it was found that the weighted ELM 1 is the most recommended algorithm for the binary classification of the potability of water for human consumption, with an accuracy of 75.8% and a G-mean of 80.6%. The feasibility of using ELMs to determine the potability of water is thus demonstrated, as they offer acceptable performance and low computational cost for training.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceIEEE Colombian Conference on Applications of Computational Intelligence (ColCACI), 2023, 1-6es_CL
dc.subjectExtreme learning machineses_CL
dc.subjectDeep learninges_CL
dc.subjectTraininges_CL
dc.subjectStandardses_CL
dc.subjectSodiumes_CL
dc.subjectPythones_CL
dc.subjectPredictive modelses_CL
dc.titleExtreme learning machines for detecting the water quality for human consumptiones_CL
dc.typeArticlees_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.uriieeexplore.ieee.org/document/10225820es_CL
dc.ucm.doidoi.org/10.1109/ColCACI59285.2023.10225820es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile