Mostrar el registro sencillo de la publicación

dc.contributor.authorRamírez, José
dc.contributor.authorZabala-Blanco, David
dc.contributor.authorAhumada-García, Roberto
dc.contributor.authorRivelli Malcó, Juan Pablo
dc.contributor.authorDehghan Firoozabadi, Ali
dc.contributor.authorFlores-Calero, Marco
dc.date.accessioned2024-05-07T16:00:45Z
dc.date.available2024-05-07T16:00:45Z
dc.date.issued2023
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5377
dc.description.abstractGemstones, such as diamonds, are used in various applications, from jewelry to technology, where they have recently been considered as semiconductor materials. However, the value of diamonds is difficult to measure due to their price being influenced by characteristics such as cut, color, clarity, and carat weight, making the estimation of diamond value a complex and sometimes subjective task. Currently, regression models are being developed to estimate the value of these precious stones. To support the estimation of diamond value and improve the training time of predictive models, this research proposes the multiclass classification of diamond values using standard ELM, regularized ELM, and weighted ELM. The classification was based on 4 value categories with respect to their prices: (a) less than US500,(b)betweenUS500 and US1000,(c)betweenUS1000 and US1500,and(d)overUS1500. The results obtained are presented based on accuracy and model training time. Of the evaluated models, the regularized ELM presented the best results, with an accuracy of 0.8375 and a runtime of 109 seconds. The results demonstrate that ELMs can efficiently classify diamond prices, and the models are robust, showing the price trend, and the main classification errors of the models are generated in classes with prices very similar between diamonds.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceIEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Valdivia, Chile, 1-6es_CL
dc.subjectTraininges_CL
dc.subjectWeight measurementes_CL
dc.subjectSemiconductor materialses_CL
dc.subjectEstimationes_CL
dc.subjectDiamondses_CL
dc.subjectTask analysises_CL
dc.subjectStandardses_CL
dc.titleExtreme learning machines for predict the diamond price rangees_CL
dc.typeArticlees_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.uriieeexplore.ieee.org/document/10418771es_CL
dc.ucm.doidoi.org/10.1109/CHILECON60335.2023.10418771es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile