Mostrar el registro sencillo de la publicación

dc.contributor.authorLópez, Juan L.
dc.contributor.authorVásquez-Coronel, José A.
dc.date.accessioned2024-06-10T20:54:13Z
dc.date.available2024-06-10T20:54:13Z
dc.date.issued2023
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5427
dc.description.abstractCongestive heart failure carries immense importance in the realm of public health. This significance arises from its substantial influence on the number of lives lost, economic burdens, the potential for prevention, and the opportunity to enhance the well-being of both individuals and the broader community through decision-making in healthcare. Several researchers have proposed neural networks for classification of different congestive heart failure categories. However, there is little information about the confidence of the prediction on short-term series. Therefore, evaluating classification models is required for effective decision-making in healthcare. This paper explores the use of three classical variants of neural networks to classify three groups of patients with congestive heart failure. The study considered the iterative method Multilayer Perceptron neural network (MLP), two non-iterative models (Extreme Learning Machine (ELM) and Random Vector Functional Link Network (RVFL)), and the CNN approach. The results showed that the deep feature learning system obtained better classification rates than MLP, ELM, and RVFL. Several scenarios designed by coupling some deep feature maps with the RVFL and MLP models showed very high simulation accuracy. The overall accuracy rate of CNN–MLP and CNN–RVFL varies between 98% and 99%.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceApplied Sciences, 13(24), 13211es_CL
dc.subjectCardiovascular time serieses_CL
dc.subjectCongestive heart failurees_CL
dc.subjectFeature extractiones_CL
dc.subjectDeep neural networkses_CL
dc.titleCongestive heart failure category classification using neural networks in short-term serieses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urimdpi.com/2076-3417/13/24/13211es_CL
dc.ucm.doidoi.org/10.3390/app132413211es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile