Mostrar el registro sencillo de la publicación

dc.contributor.authorBello, Hugo J.
dc.contributor.authorPalomar-Ciria, Nora
dc.contributor.authorBaca-García, Enrique
dc.contributor.authorLozano, Celia
dc.date.accessioned2024-08-06T19:07:50Z
dc.date.accessioned2024-08-06T19:50:13Z
dc.date.available2024-08-06T19:07:50Z
dc.date.available2024-08-06T19:50:13Z
dc.date.issued2023
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5534
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5539
dc.description.abstractCurrently, the process of evaluating suicide is highly subjective, which limits the efficacy and accuracy of prevention efforts. Artificial intelligence (AI) has emerged as a mean of investigating large datasets to identify patterns within ‘big data’ that can determine the factors on suicide outcomes. Here, we used AI tools to extract the topic from (press and social) media texts. However, news media articles lack of suicide tags. Using tweets with hashtags related to suicide, we trained a neuronal model that identifies if a given text has a suicide-related topic. Our results suggest a high level of impact of suicide cases in the media, and an intrinsic thematic relationship of suicide news. These results pave the way to build more interpretable suicide data from the media, which may help to better track, understand its origin, and improve prevention strategies.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceHealth Communication, 38(10), 2178-2187es_CL
dc.titleSuicide classification for news media using convolutional neural networkses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Saludes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.uritandfonline.com/doi/full/10.1080/10410236.2022.2058686es_CL
dc.ucm.doidoi.org/10.1080/10410236.2022.2058686es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile