Mostrar el registro sencillo de la publicación

dc.contributor.authorVásquez-Coronel, José A.
dc.contributor.authorMora, Marco
dc.contributor.authorVilches-Ponce, Karina
dc.date.accessioned2024-08-06T20:19:18Z
dc.date.available2024-08-06T20:19:18Z
dc.date.issued2023
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5561
dc.description.abstractThe Extreme Learning Machine is a single-hidden-layer feedforward learning algorithm, which has been successfully applied in regression and classification problems in different research fields. The traditional algorithm assigns random weights and biases in the hidden layer, and the Moore–Penrose inverse matrix in the regularized least-squares method is adopted to compute the weights of the output layer. Training speed, generalization ability, and robustness are the advantages that characterize this algorithm, but it has some shortcomings in solving highly nonlinear problems. The scientific community adopted non-iterative multilayer learning models as effective and efficient measures, starting with the Multilayer Extreme Learning Machine, which incorporates an unsupervised extreme learning Autoencoder into its architecture for feature mapping. Since the literature does not present an in-depth review of non-iterative multilayer models, this paper focuses on a current description of the evolution of multilayer models, which are grouped into random mappings, kernel-correntropy strategies, and conditional probability techniques. In addition to showing the mathematical fundamentals of each model, a list of databases widely used in training multilayer networks is included. Finally, we present a class of fast iterative algorithms called Shrinkage-Thresholding, which solve the minimization problem associated with an Autoencoder.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceArtificial Intelligence Review, 56(11), 13691-13742es_CL
dc.subjectMultilayer extreme learninges_CL
dc.subjectAutoencoderes_CL
dc.subjectRegression and classificationes_CL
dc.subjectComposite optimization problemses_CL
dc.subjectFast gradient variantses_CL
dc.titleA Review of multilayer extreme learning machine neural networkses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias Básicases_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urispringerlink.ucm.elogim.com/article/10.1007/s10462-023-10478-4es_CL
dc.ucm.doidoi.org/10.1007/s10462-023-10478-4es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile