Mostrar el registro sencillo de la publicación

dc.contributor.authorTramontina, Diego Ramiro
dc.contributor.authorDeluigi, O. R.
dc.contributor.authorPinzón, R.
dc.contributor.authorRojas-Nunez, Javier
dc.contributor.authorValencia, F.J.
dc.contributor.authorPasianot, R.C.
dc.contributor.authorBaltazar, S.E.
dc.contributor.authorGonzalez, R. I.
dc.contributor.authorBringa, E. M.
dc.date.accessioned2024-08-06T20:40:06Z
dc.date.available2024-08-06T20:40:06Z
dc.date.issued2023
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5568
dc.description.abstractWe present molecular dynamics (MD) simulations of radiation damage in Fe nanoparticles (NP) and bimetallic FeCu core–shell nanoparticles (CSNP). The CSNP includes a perfect body-centered cubic (bcc) Fe core coated with a face-centered cubic (fcc) Cu shell. Irradiation with Fe Primary Knock-on Atoms (PKA) with energies between 1 and 7 keV leads to point defects, without clustering beyond divacancies and very few slightly larger vacancy clusters, and without interstitial clusters, unlike what happens in bulk at the same PKA energies. The Fe-Cu interface and shell can act as a defect sink, absorbing radiation-induced damage and, therefore, the final number of defects in the Fe core is significantly lower than in the Fe NP. In addition, the Cu shell substantially diminishes the number of sputtered Fe atoms, acting as a barrier for recoil ejection. Structurally, the Cu shell responds to the stress generated by the collision cascade by creating and destroying stacking faults across the shell width, which could also accommodate further irradiation defects. We compare our MD results to Monte Carlo Binary Collision Approximation (BCA) simulations using the SRIM code, for the irradiation of an amorphous 3-layer thin film with a thickness equal to the CSNP diameter. BCA does not include defect recombination, so the number of Frenkel pairs is significantly higher than in MD, as expected. Sputtering yield (Y) is underestimated by BCA, which is also expected since the simulation is for a thin film at normal incidence. We also compare MD defect production to bulk predictions of the analytic Athermal Recombination Corrected Displacements Per Atom (arc-dpa) model. The number of vacancies in the Fe core is only slightly lower than arc-dpa predictions, but the number of interstitials is reduced by about one order of magnitude compared to vacancies, at 5 keV. According to the radiation resistance found for FeCu CSNP in our simulations, this class of nanomaterial could be suitable for developing new radiation-resistant coatings, nanostructured components, and shields for use in extreme environments, for instance, in nuclear energy and astrophysical applications.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceComputational Materials Science, 227, 112304es_CL
dc.subjectRadiation-damagees_CL
dc.subjectNanoparticleses_CL
dc.subjectIrradiationes_CL
dc.subjectCore–shelles_CL
dc.subjectMolecular dynamicses_CL
dc.titleProbing radiation resistance in simulated metallic core–shell nanoparticleses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urisciencedirect.ucm.elogim.com/science/article/pii/S0927025623002987es_CL
dc.ucm.doidoi.org/10.1016/j.commatsci.2023.112304es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile