Mostrar el registro sencillo de la publicación

dc.contributor.authorMartínez-López, Yoan
dc.contributor.authorCastillo-Garit, J A
dc.contributor.authorCasanola-Martin, Gerardo M.
dc.contributor.authorRasulev, Bakhtiyor
dc.contributor.authorRodríguez-Gonzalez, Ansel Y.
dc.contributor.authorMartínez-Santiago, Oscar
dc.contributor.authorBarigye, Stephen J.
dc.date.accessioned2024-12-27T13:58:15Z
dc.date.available2024-12-27T13:58:15Z
dc.date.issued2024
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5812
dc.description.abstractUbiquitin–proteasome system (UPS) is a highly regulated mechanism of intracellular protein degradation and turnover. The UPS is involved in different biological activities, such as the regulation of gene transcription and cell cycle. Several researchers have applied cheminformatics and artificial intelligence methods to study the inhibition of proteasomes, including the prediction of UPP inhibitors. Following this idea, we applied a new tool for obtaining molecular descriptors (MDs) for modeling proteasome Inhibition in terms of EC50 (µmol/L), in which a set of new MDs called atomic weighted vectors (AWV) and several prediction algorithms were used in cheminformatics studies. In the manuscript, a set of descriptors based on AWV are presented as datasets for training different machine learning techniques, such as linear regression, multiple linear regression (MLR), random forest (RF), K-nearest neighbors (IBK), multi-layer perceptron, best-first search, and genetic algorithm. The results suggest that these atomic descriptors allow adequate modeling of proteasome inhibitors despite artificial intelligence techniques, as a variant to build efficient models for the prediction of inhibitory activity.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceMolecular Diversity, 28(4), 1983-1994es_CL
dc.subjectAWVes_CL
dc.subjectGAes_CL
dc.subjectDescriptores_CL
dc.subjectMLes_CL
dc.subjectDeep learninges_CL
dc.subjectUPSes_CL
dc.titleExploring proteasome inhibition using atomic weighted vector indices and machine learning approacheses_CL
dc.typeArticlees_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urispringerlink.ucm.elogim.com/article/10.1007/s11030-023-10638-2es_CL
dc.ucm.doidoi.org/10.1007/s11030-023-10638-2es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile