Mostrar el registro sencillo de la publicación

dc.contributor.authorRojas-Nunez, J.
dc.contributor.authorFreire, R.M.
dc.contributor.authorElias, A.L.
dc.contributor.authorFujisawa, K.
dc.contributor.authorTroncoso, L.
dc.contributor.authorDenardin, J.C.
dc.contributor.authorPlaza-Alcafuz, N.
dc.contributor.authorBaltazar, S.E.
dc.date.accessioned2025-04-10T14:46:09Z
dc.date.available2025-04-10T14:46:09Z
dc.date.issued2025
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5954
dc.description.abstractIn this work, the formation FeNi bimetallic nanoparticles was investigated from an experimental and theoretical point of view. Molecular dynamics simulations were carried out in order to know the most stable arrangement of Fe and Ni atoms. The simulations considered nanostructures with three different sizes (6231, 10,000, and 21,366 atoms), and the configurations were forced to have Fe/Ni ratios approximately equal to one. The theoretical results pointed out the formation of an FeNi3 crystalline phase. Also, for different nanoparticle sizes, the lowest energy and stable structure is the Core-Shell FeNi3@Fe, even though the energy difference with the Janus-like structure (JN FeNi3/Fe) structure gets narrower as the number of atoms of the nanostructure increases. Considering these results, the synthesis of the FeNi bimetallic nanoparticles was carried out, and core-shell and Janus-like morphologies were expected to be seen. Interestingly, only core-shell NPs were observed through TEM and HAADF-STEM results, which clearly evidences the interference of the oleylamine (OAm) on the atomic arrangement of the final nanostructure. Based on the experimental results, as well as their discrepancy when compared to the theoretical ones, our hypothesis is that oleylamine is able to guide the nanostructure formation towards a core-shell morphology, by avoiding the appearance of Fe-rich agglomerates and by providing an active interactional site for OAm-Fe complexes with subsequent reduction on the surface of the FeNi3 core. As a result, Fe0 shell is produced, giving rise to a core-shell nanostructure.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceJournal of Materials Research and Technology, 34, 2193-2200es_CL
dc.subjectMetals and alloyses_CL
dc.subjectChemical synthesises_CL
dc.subjectNanomaterialses_CL
dc.subjectComputer simulationses_CL
dc.titleCore-shell or Janus-like Fe0.5Ni0.5 nanostructures: a theoretical and experimental studyes_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urisciencedirect.ucm.elogim.com/science/article/pii/S2238785424029922?via%3Dihubes_CL
dc.ucm.doidoi.org/10.1016/j.jmrt.2024.12.189es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile