Mostrar el registro sencillo de la publicación

dc.contributor.authorAro, Katherine
dc.contributor.authorGuevara, Leonardo
dc.contributor.authorTorres-Torriti, Miguel
dc.contributor.authorTorres, Felipe
dc.contributor.authorPrado, Alvaro
dc.date.accessioned2025-04-10T14:50:12Z
dc.date.available2025-04-10T14:50:12Z
dc.date.issued2024
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5961
dc.description.abstractThis paper presents a robust control strategy for trajectory-tracking control of Skid-Steer Mobile Manipulators (SSMMs) using a Robust Nonlinear Model Predictive Control (R-NMPC) approach that minimises trajectory-tracking errors while overcoming model uncertainties and terra-mechanical disturbances. The proposed strategy is aimed at counteracting the effects of disturbances caused by the slip phenomena through the wheel–terrain contact and bidirectional interactions propagated by mechanical coupling between the SSMM base and arm. These interactions are modelled using a coupled nonlinear dynamic framework that integrates bounded uncertainties for the mobile base and arm joints. The model is developed based on principles of full-body energy balance and link torques. Then, a centralized control architecture integrates a nominal NMPC (disturbance-free) and ancillary controller based on Active Disturbance-Rejection Control (ADRC) to strengthen control robustness, operating the full system dynamics as a single robotic body. While the NMPC strategy is responsible for the trajectory-tracking control task, the ADRC leverages an Extended State Observer (ESO) to quantify the impact of external disturbances. Then, the ADRC is devoted to compensating for external disturbances and uncertainties stemming from the model mismatch between the nominal representation and the actual system response. Simulation and field experiments conducted on an assembled Pioneer 3P-AT base and Katana 6M180 robotic arm under terrain constraints demonstrate the effectiveness of the proposed method. Compared to non-robust controllers, the R-NMPC approach significantly reduced trajectory-tracking errors by 79.5% for mobile bases and 42.3% for robot arms. These results highlight the potential to enhance robust performance and resource efficiency in complex navigation conditions.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceRobotics, 13(12), 171es_CL
dc.subjectRobust nonlinear model predictive controles_CL
dc.subjectActive disturbance-rejection controles_CL
dc.subjectPassivityes_CL
dc.subjectSkid-steer mobile manipulatores_CL
dc.subjectWheel terrain interactiones_CL
dc.titleRobust nonlinear model predictive control for the trajectory tracking of skid-steer mobile manipulators with wheel–ground interactionses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.urimdpi.com/2218-6581/13/12/171es_CL
dc.ucm.doidoi.org/10.3390/robotics13120171es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile