Mostrar el registro sencillo de la publicación

dc.contributor.authorBarzola-Monteses, Julio
dc.contributor.authorCaicedo-Quiroz, Rosangela
dc.contributor.authorParrales-Bravo, Franklin
dc.contributor.authorMedina-Suarez, Cristhian
dc.contributor.authorYanez-Pazmino, Wendy
dc.contributor.authorZabala-Blanco, David
dc.contributor.authorLeyva-Vazquez, Maikel Y.
dc.date.accessioned2025-04-14T15:26:24Z
dc.date.available2025-04-14T15:26:24Z
dc.date.issued2024
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5969
dc.description.abstractIn Ecuador and globally, cardiovascular diseases are the leading cause of mortality, accounting for a worrying 26.49% of deaths in 2019. An approach based on deep learning is applied to improve the capacity for early prediction and reduce its incidence. In this work, three different models were proposed and compared: deep neural networks (DNN), convolutional neural networks (CNN), and multilayer perceptron (MLP). Experiments were conducted in two scenarios: one using a dataset that included 12 variables, and another in which the variables were reduced to those most significantly correlated with cardiovascular disease, i.e., 4 variables; both scenarios with 918 clinical records per variable. Using the Neutrosophic AHP-TOPSIS method for model selection, the CNN model trained with the original dataset was identified as the best-performing model among the proposed options. In specific terms, the evaluation metrics of the CNN model were as follows: an accuracy of 92.17%, a sensitivity of 94.51%, a specificity of 90.78%, an F1-Score of 93.30%, and an area under the ROC curve of 90.03%.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceNeutrosophic Sets and Systems, 74, 210-226es_CL
dc.subjectHeart Diseasees_CL
dc.subjectPredictiones_CL
dc.subjectConvolutional Neural Networkes_CL
dc.subjectDeep Neural Networkes_CL
dc.subjectMultilayer Perceptrones_CL
dc.subjectNeutrosophic AHP-TOPSISes_CL
dc.titleDetection of cardiovascular diseases using predictive models based on deep learning techniques: a hybrid neutrosophic AHP-TOPSIS approach for model selectiones_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.uridigitalrepository.unm.edu/nss_journal/vol74/iss1/18/es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile