4DGVF: Segmentation variationnelle pour images 3D multicomposantes

Author
Jaouen, Vincent
González-Gutiérrez, Paulo
Stute, Simon
Guilloteau, Denis
Chalon, Sylvie
Buvat, Irene
Tauber, Clovis
Date
2014Metadata
Show full item recordAbstract
In this paper, we generalize the gradient vector flow field to vector-valued images. We base our method on the definition of a structure tensor that is calculated according to a blind estimation of contrast in the different channels and that exploits the whole spatio-spectral information, hence reducing sensitivity to noise and better defining orientations of the force field. The resulting field takes profit of both magnitude and direction of the vector-valued gradient. Applied to biological volume delineation in 3D dynamic Positron Emission Tomography (PET) imaging, we validate our method on realistic Monte Carlo simulations of numerical phantoms and present results on real dynamic PET data. Performances observed on such images confirm the potential of the proposed active surface approach for vector-valued data.
Fuente
Traitement du Signal, 31(1-2), 9-38Identificador DOI
doi.org/10.3166/ts.31.9-38Collections
The following license files are associated with this item: