Show simple item record

dc.contributor.authorMora, Marco
dc.contributor.authorCordova-Lepe, Fernando
dc.contributor.authorDel Valle-Salamanca, Rodrigo
dc.date.accessioned2017-12-04T12:23:10Z
dc.date.available2017-12-04T12:23:10Z
dc.date.issued2012
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/1540
dc.description.abstractIn this paper, a new operator for contour detection in images with multiplicative noise is presented. Traditional methods of edge detection, as those based in gradient operator or measures of variance, follow a logic and a math formulation in correspondence with the Differential and Integral Calculus of Newton. This work presents a new operator of non-Newtonian type which had shown be more efficient in contour detection than the traditional operators. Like the regular gradient, a non-Newtonian gradient can be used in a number of more complex methods, which shows its potential in the contours detection in images affected by multiplicative noise.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourcePattern Recognition Letters, 33(10), 1245-1256es_CL
dc.subjectNon-Newtonian gradientes_CL
dc.subjectMultiplicative gradientes_CL
dc.subjectMultiplicative noisees_CL
dc.subjectContour detectiones_CL
dc.titleA non-Newtonian gradient for contour detection in images with multiplicative noisees_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urisibib2.ucm.cl:2048/login?url=https://www.sciencedirect.com/science/article/pii/S0167865512000530?via%3Dihubes_CL
dc.ucm.doidoi.org/10.1016/j.patrec.2012.02.012es_CL


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile