Mostrar el registro sencillo de la publicación

dc.contributor.authorCysneiros, Francisco José A.
dc.contributor.authorLeiva, Víctor
dc.contributor.authorMarchant-Fuentes, Carolina
dc.contributor.authorLiu, Shuangzhe
dc.date.accessioned2018-10-23T12:38:16Z
dc.date.available2018-10-23T12:38:16Z
dc.date.issued2018
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/1956
dc.description.abstractMultivariate control charts are powerful and simple visual tools for monitoring the quality of a process. This multivariate monitoring is carried out by considering simultaneously several correlated quality characteristics and by determining whether these characteristics are in control or out of control. In this paper, we propose a robust methodology using multivariate quality control charts for subgroups based on generalized Birnbaum–Saunders distributions and an adapted Hotelling statistic. This methodology is constructed for Phases I and II of control charts. We estimate the corresponding parameters with the maximum likelihood method and use parametric bootstrapping to obtain the distribution of the adapted Hotelling statistic. In addition, we consider the Mahalanobis distance to detect multivariate outliers and use it to assess the adequacy of the distributional assumption. A Monte Carlo simulation study is conducted to evaluate the proposed methodology and to compare it with a standard methodology. This study reports the good performance of our methodology. An illustration with real-world air quality data of Santiago, Chile, is provided. This illustration shows that the methodology is useful for alerting early episodes of extreme air pollution, thus preventing adverse effects on human health.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceJournal of Statistical Computation and Simulation, 88(1), 182-202es_CL
dc.subjectAverage run lengthes_CL
dc.subjectBootstrappinges_CL
dc.subjectHotelling statistices_CL
dc.subjectMahalanobis distancees_CL
dc.subjectMaximum likelihood methodes_CL
dc.subjectMonte Carlo simulationes_CL
dc.subjectMultivariate non-normal distributionses_CL
dc.subjectR softwarees_CL
dc.titleRobust multivariate control charts based on Birnbaum–Saunders distributionses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias Básicases_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.uriwww.tandfonline.com/doi/abs/10.1080/00949655.2017.1381699?journalCode=gscs20es_CL
dc.ucm.doidoi.org/10.1080/00949655.2017.1381699es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile