Mostrar el registro sencillo de la publicación
A comparison of stochastic gradient MCMC using multi-core and GPU architectures
dc.contributor.author | Hernández, Sergio | |
dc.contributor.author | Valdés, José | |
dc.contributor.author | Valdenegro, Matias | |
dc.date.accessioned | 2020-10-26T12:55:39Z | |
dc.date.available | 2020-10-26T12:55:39Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | http://repositorio.ucm.cl/handle/ucm/3120 | |
dc.description.abstract | Deep learning models are traditionally used in big data scenarios. When there is not enough training data to fit a large model, transfer learning re-purpose the learned features from an existing model and re-train the lower layers for the new task. Bayesian inference techniques can be used to capture the uncertainty of the new model but it comes with a high computational cost. In this paper, the run time performance of an Stochastic Gradient Markov Chain Monte Carlo method using two different architectures is compared, namely GPU and multi-core CPU. As opposed to the widely usage of GPUs for deep learning, significant advantages from using modern CPU architectures. | es_CL |
dc.language.iso | en | es_CL |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Chile | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | * |
dc.source | 2020 Congreso Estudiantil de Electrónica y Electricidad (INGELECTRA) | es_CL |
dc.title | A comparison of stochastic gradient MCMC using multi-core and GPU architectures | es_CL |
dc.type | Article | es_CL |
dc.ucm.indexacion | Scopus | es_CL |
dc.ucm.uri | ieeexplore.ieee.org/document/9087329/authors#authors | es_CL |
dc.ucm.doi | doi.org/10.1109/INGELECTRA50225.2020.246962 | es_CL |
Ficheros en la publicación
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a esta publicación. |