Mostrar el registro sencillo de la publicación

dc.contributor.authorNaranjo-Torres, José
dc.contributor.authorMora, Marco
dc.contributor.authorHernández-García, Ruber
dc.contributor.authorBarrientos, Ricardo
dc.contributor.authorFredes, Claudio
dc.contributor.authorValenzuela-Keller, Andrés A.
dc.date.accessioned2020-10-26T20:58:02Z
dc.date.available2020-10-26T20:58:02Z
dc.date.issued2020
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/3124
dc.description.abstractAgriculture has always been an important economic and social sector for humans. Fruit production is especially essential, with a great demand from all households. Therefore, the use of innovative technologies is of vital importance for the agri-food sector. Currently artificial intelligence is one very important technological tool widely used in modern society. Particularly, Deep Learning (DL) has several applications due to its ability to learn robust representations from images. Convolutional Neural Networks (CNN) is the main DL architecture for image classification. Based on the great attention that CNNs have had in the last years, we present a review of the use of CNN applied to different automatic processing tasks of fruit images: classification, quality control, and detection. We observe that in the last two years (2019–2020), the use of CNN for fruit recognition has greatly increased obtaining excellent results, either by using new models or with pre-trained networks for transfer learning. It is worth noting that different types of images are used in datasets according to the task performed. Besides, this article presents the fundamentals, tools, and two examples of the use of CNNs for fruit sorting and quality control.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceApplied Sciences, 10(10), 3443es_CL
dc.subjectConvolutional neural networkes_CL
dc.subjectDeep learninges_CL
dc.subjectFruit classificationes_CL
dc.subjectFruit quality evaluationes_CL
dc.subjectFruit detectiones_CL
dc.titleA review of convolutional neural network applied to fruit image processinges_CL
dc.typeArticlees_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.doidoi.org/10.3390/app10103443es_CL


Ficheros en la publicación

Vista Previa No Disponible
Thumbnail

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile