Mostrar el registro sencillo de la publicación

dc.contributor.authorBueno-Morais, Marcos V.
dc.contributor.authorRudke, Anderson Paulo
dc.contributor.authorFreitas Xavier, Ana Carolina
dc.contributor.authorFujita, Thais
dc.contributor.authorAbou Rafee, Sameh Adib
dc.contributor.authorDroprinchinski Martins, Leila
dc.contributor.authorToledo de Almeida Albuquerque, Taciana
dc.contributor.authorDias de Freitas, Edmilson
dc.contributor.authorMartins, Jorge Alberto
dc.date.accessioned2021-11-08T17:25:05Z
dc.date.available2021-11-08T17:25:05Z
dc.date.issued2020
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/3433
dc.description.abstractDuring the last decades, the science of remote sensing of the Earth's surface has produced an enormous amount of data. In parallel, with the increase in computational capacity, several classification methods have been applied to the satellite retrievals. This timely combination allows recovering more accurate knowledge about the land cover maps of past times. Therefore, the main goal of this work was to develop a land cover product for the year 1985 in the Upper Paraná River Basin (UPRB-1985), one of the largest and most economically important river basins in the world. The land cover map was developed using a supervised classifier - SVM (Support Vector Machine) applied to data from Landsat TM (Thematic Mapper) sensor. The classification process was carried out based on 52 scenes collected during 1985 and a total of 17,040 training samples across the basin. Pixel and Object-based methods were used to classify Landsat scenes. The generated mapping accuracy was assessed using statistical criteria adopted in the literature - Global Accuracy and Kappa Index. The McNemar's test result showed no significant differences (at the 5% level) between the Pixel-based and Object-based classifications, even with the Object-based classification accuracy was slightly higher (Global Accuracy of 79.8%). However, some relationship between the relief and the classification approach was observed. In sub-basins with high slopes, the mean overall accuracy values of the Pixel-based classification approach were 13.1% higher than the Object-based approach. By mapping past land cover, this work is strategic information to understand ongoing processes, as well as to assess changes in land cover that have occurred over time and evaluate to what extent they explain the variability in the hydrology of the region.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceRemote Sensing Applications: Society and Environment, 21, 100436es_CL
dc.subjectLandsates_CL
dc.subjectSupport vector machinees_CL
dc.subjectPixel-based classificationes_CL
dc.subjectObject-based classificationes_CL
dc.titleMapping past landscapes using landsat data. Upper Paraná River Basin in 1985es_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.uriwww.sciencedirect.com/science/article/abs/pii/S2352938520303888?via%3Dihubes_CL
dc.ucm.doidoi.org/10.1016/j.rsase.2020.100436es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile