Mostrar el registro sencillo de la publicación

dc.contributor.authorRiquelme, Javier A.
dc.contributor.authorBarrientos, Ricardo
dc.contributor.authorHernández-García, Ruber
dc.contributor.authorNavarro, Cristóbal A.
dc.date.accessioned2021-11-22T17:36:02Z
dc.date.available2021-11-22T17:36:02Z
dc.date.issued2020
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/3502
dc.description.abstractThe Nearest Neighbors search is a widely used technique with applications on several classification problems. Particularly, the k-nearest neighbor (kNN) algorithm is a well-known method used in modern information retrieval systems aiming to obtain relevant objects based on their similarity to a given query object. Although algorithms based on an exhaustive search have proven to be effective for the kNN classification, their main drawback is their high computational complexity, especially with high-dimensional data. In this work, we present a novel and parallel algorithm to solve kNN queries on a multi-GPU platform. The proposed method is comprised of two stages, which first is based on pivots using the value of K to reduce the search space, and the second one uses a set of heaps to return the final results. Experimental results showed that using between 1-4 GPUs, the proposed algorithm achieves speed-ups of 117x, 224x, 330x, and 389x, respectively. Besides, the obtained results were compared with previous approaches of the state-of-the-art (cp-select and CUB Library), evidencing the superiority of our proposal.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.source39th International Conference of the Chilean Computer Science Society (SCCC), 2020, 1-8es_CL
dc.subjectkNNes_CL
dc.subjectGPUes_CL
dc.subjectMulti-GPUes_CL
dc.subjectExhaustive searches_CL
dc.titleAn exhaustive algorithm based on GPU to process a kNN queryes_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.uriieeexplore.ieee.org/document/9281231es_CL
dc.ucm.doidoi.org/10.1109/SCCC51225.2020.9281231es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile